Fungsi Eksponensial dan Trigonometri Bentuk lain dari e adalah: e=etiy= e ey = e* ( cos y + i sin y) Contoh !e2-i Note:cos(-0) = cose dan sin(-0) = -sin e =cos e + i sin e-18=cos e-i sin Tentukanlah hasil dari ee-e-ie dan ef+ e-ie 16 Fungsi Trigonometri Bilangan Kompleks sin --e- COs- e-i Tentukanlah nilai dari: COsi= /7i,e-tm/2 _=-i,en 2 - 2,ein 2 Buktikan sin z+ cos2 z 1 Fungsi Hiperbolik Tentukan persamaan dari sin iy dan cos iy dengan menggunakan persamaan sebelumnya! Setelah didapat persamaan di atas, baru lah di dapat fungsi yang dinamakan dengan sinus dan cosinus hiperbolik. Secara matematis dapat ditulis Y e+e ;cosh z = 2 sinh z = Buktikan cosh z -sinh2 z 1 ogaritma
Permutations and Combinations
If there are 5 dishes, they can be relished in any order at a time. In permutation, it should be in a particular order. In combination, the order does not matter. Take 3 letters a, b, and c. The possible ways of pairing any two letters are ab, bc, ac, ba, cb and ca. It is in a particular order. So, this can be called the permutation of a, b, and c. But if the order does not matter then ab is the same as ba. Similarly, bc is the same as cb and ac is the same as ca. Here the list has ab, bc, and ac alone. This can be called the combination of a, b, and c.
Counting Theory
The fundamental counting principle is a rule that is used to count the total number of possible outcomes in a given situation.
Prove from the questions in the blue circle
Step by step
Solved in 4 steps with 4 images