F(s) = L{ƒ(1)} = ¸ƒ(t)x™“dt (t)e-ª

Algebra & Trigonometry with Analytic Geometry
13th Edition
ISBN:9781133382119
Author:Swokowski
Publisher:Swokowski
Chapter6: The Trigonometric Functions
Section6.6: Additional Trigonometric Graphs
Problem 77E
icon
Related questions
Question
The Laplace transform of a function f(t) is given by the expression
F(s) = L{ƒ(i)} = σ (t)e¯* dt
Find the Laplace transform of the following functions
¡d³ƒ(t) – (1 – b) dƒ (¹), where b is a constant
dt ³.
dt
a.
aeª sin at.-be- cos br, where a and b are constants
f(kt-m), where and m are constants.
Find the inverse Laplace transform of the following functions
MAN
b.
C.
d. -
e.
f.
g.
S
F(s) = (5 + 2)(s+3)
6s+25
s(5 + 5)²
F(s) = (5 + 3)e-34
s² (5+2)
· F(s):
3s +4
F(s) = 5(5² +63 +13)
2
SUPP
jesto toyot
amba
76
0
Transcribed Image Text:The Laplace transform of a function f(t) is given by the expression F(s) = L{ƒ(i)} = σ (t)e¯* dt Find the Laplace transform of the following functions ¡d³ƒ(t) – (1 – b) dƒ (¹), where b is a constant dt ³. dt a. aeª sin at.-be- cos br, where a and b are constants f(kt-m), where and m are constants. Find the inverse Laplace transform of the following functions MAN b. C. d. - e. f. g. S F(s) = (5 + 2)(s+3) 6s+25 s(5 + 5)² F(s) = (5 + 3)e-34 s² (5+2) · F(s): 3s +4 F(s) = 5(5² +63 +13) 2 SUPP jesto toyot amba 76 0
Expert Solution
Step 1: Find the Laplace transformation

(a) bd3ftdt3-1-bdftdt

We know that Laplace transformation of Fnt is

Lfnt=snLft-sn-1f0-sn-2f'0-....-fn-10             =snFs-sn-1f0-sn-2f'0-....-fn-10         Lft=Fs

From the linear property of Laplace transformation we have 

Lcft=cLft             =cFs

bd3ftdt3-1-bdftdt=Lbd3ftdt3-1-bdftdt=bLd3ftdt3-1-bLdftdt=bs3Lft-s2f''0-sf'0-f0-1-bsLft-f0=bs3Lft-bs2f''0-bsf'0-bf0-sLft+f0+bsLft-bf0=bs3Fs-bs2f''0-bsf'0-bf0-sFs+f0+bsFs-bf0=bs3-s+bsFs-bs2f''0-bsf'0-f02b+1

Hence Lbd3ftdt3-1-bdftdt=bs3-s+bsFs-bs2f''0-bsf'0-f02b+1

(b) aeatsinat-be-btcosbt

From the linear property of Laplace transformation we have 

Lcft=cLft             =cFs

From first shifting property we have 

Leatft=Fs-a

aeatsinat-be-btcosbt=Laeatsinat-be-btcosbt=aLeatsinat-bLe-btcosbt=aFs-a-bFs+b             Lsinat=Fs                =as2+a2Fs-a=as-a2+a2Lcosbt=Fs                =ss2+b2Fs-b=s-bs-b2+b2aeatsinat-be-btcosbt=a2s-a2+a2-bs-bs-b2+b2

Hence Laeatsinat-be-btcosbt=a2s-a2+a2-bs-bs-b2+b2

(c) fkt-m

From second shifting property we have 

Lft=FsGt=Ft-a   t>0       =0       t>0LGt=e-asFs

From change of scale property

Lfat=1aFsa

Using the first shifting property then change of scale property we have 

Lfkt-m=e-msLfkt                    =e-mskFsk

Hence Lfkt-m   =e-mskFsk

 

 

 

steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
Recommended textbooks for you
Algebra & Trigonometry with Analytic Geometry
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage