F(s) = 28²+218+61 K₁ K2 K3 (8+4)³ + 8+4 (8+4)2 + d (8+4)³ ds (8 + 4) ³ 28²+218+61 = (8+4)³ K₁ d K₂ 3. d K3 − — [(s + 4)³ ù ] + £; [(s + 4) ³¸ Ka³ ] + 1; [(s + 4)³ _ *,, ds d ds s+4 ds (8+4)2 ds = ± [K₁ (8 + 4)²] + [K2 (s + 4)] + [Ks] d ds ds (s+r)³

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

What is the partial-farction expansion of the rational function F(s) if it has repeated real roots and a solution of a sum of three different fractions?

F(s) = 28²+218+61
K₁
K2
K3
(8+4)³
+
8+4 (8+4)2
+
d
(8+4)³
ds
(8 + 4) ³ 28²+218+61
=
(8+4)³
K₁
d
K₂
3.
d
K3
− — [(s + 4)³ ù ] + £; [(s + 4) ³¸ Ka³ ] + 1; [(s + 4)³ _ *,,
ds
d
ds
s+4
ds
(8+4)2 ds
= ± [K₁ (8 + 4)²] + [K2 (s + 4)] + [Ks]
d
ds
ds
(s+r)³
Transcribed Image Text:F(s) = 28²+218+61 K₁ K2 K3 (8+4)³ + 8+4 (8+4)2 + d (8+4)³ ds (8 + 4) ³ 28²+218+61 = (8+4)³ K₁ d K₂ 3. d K3 − — [(s + 4)³ ù ] + £; [(s + 4) ³¸ Ka³ ] + 1; [(s + 4)³ _ *,, ds d ds s+4 ds (8+4)2 ds = ± [K₁ (8 + 4)²] + [K2 (s + 4)] + [Ks] d ds ds (s+r)³
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,