From (2) we get: 7h 1 (7g+7)n+1 - 2-(7g+6) (2 - N-(79+6) II ig+1)k-(a+1)t-q +1 h=0 k=1 7h 1 79+7)n+q+1 - 2-(6q+6) = (S2q+1 – 2-(64+6) EII II-, (a+1)k-(q+1)t +1 h=0 k=1 So n 7h+1 1 2(79+7)n+q+2 - 2-(6q+5) = (2 - N-(74+6) L II T a+1)k-(q+1)t-q +1 h=0 k=1

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question

Show me the determine red and all information is here

(d) Subtracting 2m-(79+6) from both sides in (1), we have:
1
Im+1
Lm-(7q+6)
(Pm-g – Pm-(8q+7),
1+ II-o Pm-(q+1)t-q
t=0
and the following formula, for n > q + 1
Pa+1)n-(a+1)²–1)¯
P(a+1)n=[(a+2)²+(5q+3)]
(b),
n-(q+1)
1
= (L – N-(7q+6)II
1+II-o P(a+1)k-(a+1)t-q
k=1
t=0
(2)
P(a+1)n-(a+1)²–(a+1)) – 12(a+1)n-[(a+2)²+(49+3)] >
(q+1)n
n-(q+1)
1
= (Lq+1 – 2-(6q+6) II
1+ II-o P(a+1)k-(a+1)t
k=1
From (2) we get:
n
7h
1
Lra+Dnt1 - 2-(74+6) = (21 – 52–(7q+6)) L1I T Pla+1)k-(q+1)t-q + 1'
h=0 k=1
t=0
n
7h
1
L(79+7)n+q+1 - 2-(6q+6)
(Na+1 - 2-(64+6) 2I1T a+1)k-(a+1)t + 1
h=0 k=1
t=0
So
7h+1
1
2(79+7)n+g+2
(Ga+5) = (M1 – N-(74+6)) L 11 T Lio+1)k-(q+1)t-q
+1
h=0 k=1
t=0
4
Transcribed Image Text:(d) Subtracting 2m-(79+6) from both sides in (1), we have: 1 Im+1 Lm-(7q+6) (Pm-g – Pm-(8q+7), 1+ II-o Pm-(q+1)t-q t=0 and the following formula, for n > q + 1 Pa+1)n-(a+1)²–1)¯ P(a+1)n=[(a+2)²+(5q+3)] (b), n-(q+1) 1 = (L – N-(7q+6)II 1+II-o P(a+1)k-(a+1)t-q k=1 t=0 (2) P(a+1)n-(a+1)²–(a+1)) – 12(a+1)n-[(a+2)²+(49+3)] > (q+1)n n-(q+1) 1 = (Lq+1 – 2-(6q+6) II 1+ II-o P(a+1)k-(a+1)t k=1 From (2) we get: n 7h 1 Lra+Dnt1 - 2-(74+6) = (21 – 52–(7q+6)) L1I T Pla+1)k-(q+1)t-q + 1' h=0 k=1 t=0 n 7h 1 L(79+7)n+q+1 - 2-(6q+6) (Na+1 - 2-(64+6) 2I1T a+1)k-(a+1)t + 1 h=0 k=1 t=0 So 7h+1 1 2(79+7)n+g+2 (Ga+5) = (M1 – N-(74+6)) L 11 T Lio+1)k-(q+1)t-q +1 h=0 k=1 t=0 4
In this work, we deal with the following nonlinear difference equation
Im-(79+6)
1+ II-o Pm-(9+1)t-g
Im+1
= 0, 1, ..,
(1)
m =
t%3D0
where N-(79+6), 2-(7g+5), ·
-1, No E (0, 0) is investigated.
(d) We can generate the following formulas:
L(79+7)n+r(q+1)+s+1
r-7)(4+1)+s+1 (1–
(ITm-12-(mq+,
1+ (IIm=1 2-
m-1)+s)/2(r-7)(a+1)+s+1
(mq+m-:
n-1)+s)
Lm3D
n
7h+r
ΣΠ
IIm=1 P(a+1)t-(mq+m-1)+s + 1
1
h=0 k=1
(e) If 2(7g+7)n+(t–1)q+t → a(t-1)q+t 70 then 2(7g+7)n+6q+7 → 0 as n → o,
If 2(79+7)n+tq+t → atg+t #0 then 2(7g+7)n+7q+7 → 0 as n → o. t = 1,6.
Transcribed Image Text:In this work, we deal with the following nonlinear difference equation Im-(79+6) 1+ II-o Pm-(9+1)t-g Im+1 = 0, 1, .., (1) m = t%3D0 where N-(79+6), 2-(7g+5), · -1, No E (0, 0) is investigated. (d) We can generate the following formulas: L(79+7)n+r(q+1)+s+1 r-7)(4+1)+s+1 (1– (ITm-12-(mq+, 1+ (IIm=1 2- m-1)+s)/2(r-7)(a+1)+s+1 (mq+m-: n-1)+s) Lm3D n 7h+r ΣΠ IIm=1 P(a+1)t-(mq+m-1)+s + 1 1 h=0 k=1 (e) If 2(7g+7)n+(t–1)q+t → a(t-1)q+t 70 then 2(7g+7)n+6q+7 → 0 as n → o, If 2(79+7)n+tq+t → atg+t #0 then 2(7g+7)n+7q+7 → 0 as n → o. t = 1,6.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education