Fourier Series of 2 – on the interval [-, n 2+ 7? -E 1)* sin (n2) 2+ㅠ2 -X, L'co () =D1 8(–1)" cos() +En 1 3+ 2 -E (-1)" cos (nz) 3 4 n-1 2+2 - (-1)" cos (nz)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Help me
Fourier Series of 2 - on the interval [-n, 7]
2+능m2 -21
(-1)" sin (nz)
8.
n=1
2+72 - (-1)" cos (nz)
n=1
8(-1)" cos(프)
2 + En 1
00 (-1)" cos (nz)
2
3+
18
3
2+ 2 - i
so (-1)" cos (nz)
The solution of the initial value problem y" - 2y +2y = 5 sin(t), y (0) = 0,
y = et cos (t) + 2 cos (t) – 2e t cos (t) + sin (t)
y = e' sin (t) + 2 cos (t) + 2e* cos (t) + cos (t)
y = e' sin (t) + 2 cos (t) – 2e cos (t) + sin (t)
y = -et sin (t) +2 cos (t) + 2et cos (t) + sin (t)
y = e t sin (t) + 2 sin (t) – 2et cos (t) + sin (t)
Transcribed Image Text:Fourier Series of 2 - on the interval [-n, 7] 2+능m2 -21 (-1)" sin (nz) 8. n=1 2+72 - (-1)" cos (nz) n=1 8(-1)" cos(프) 2 + En 1 00 (-1)" cos (nz) 2 3+ 18 3 2+ 2 - i so (-1)" cos (nz) The solution of the initial value problem y" - 2y +2y = 5 sin(t), y (0) = 0, y = et cos (t) + 2 cos (t) – 2e t cos (t) + sin (t) y = e' sin (t) + 2 cos (t) + 2e* cos (t) + cos (t) y = e' sin (t) + 2 cos (t) – 2e cos (t) + sin (t) y = -et sin (t) +2 cos (t) + 2et cos (t) + sin (t) y = e t sin (t) + 2 sin (t) – 2et cos (t) + sin (t)
Fourier series of 2-
*
on the inter val
3
of ETT, #]
|AnsweR should be dis cuss in English
wond]
The Solution of the initial value problem
y" – 24+ 24= 5 sin (t), y(o)= 0, ylo)=o
Answer have to details how you
solve this]
Transcribed Image Text:Fourier series of 2- * on the inter val 3 of ETT, #] |AnsweR should be dis cuss in English wond] The Solution of the initial value problem y" – 24+ 24= 5 sin (t), y(o)= 0, ylo)=o Answer have to details how you solve this]
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Point Estimation, Limit Theorems, Approximations, and Bounds
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,