Forted Withe 8.4.13 Let x = 4 sin 0 so that dr = 4 cos 0 d0. Note that V16- 1² = 4 cos 0. Thus, 1 4 cos e 4 cos e ()+c. dx = de = 0 +C = sin-1 16

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

No need to show all work here, I understand where we got theta+C. What I don't understand is how that equals sin^-1(x/4)? Where did this come from and how does it relate to theta + C? 

**Integration Exercise Example**

**Problem:**

Evaluate the integral:

\[
\int \frac{dx}{\sqrt{16 - x^2}}
\]

**Solution:**

1. **Substitution:**
   Let \( x = 4 \sin \theta \), so that \( dx = 4 \cos \theta \, d\theta \).

2. **Simplification:**
   Note that:

   \[
   \sqrt{16 - x^2} = \sqrt{16 - (4 \sin \theta)^2} = \sqrt{16(1 - \sin^2 \theta)} = \sqrt{16 \cos^2 \theta} = 4 \cos \theta
   \]

3. **Integral Transformation:**
   Rewrite the integral as:

   \[
   \int \frac{1}{\sqrt{16 - x^2}} \, dx = \int \frac{4 \cos \theta}{4 \cos \theta} \, d\theta = \int d\theta
   \]

4. **Integration:**
   \[
   = \theta + C
   \]

5. **Back-Substitute:**
   Since \( \theta = \sin^{-1} \left(\frac{x}{4}\right) \), we have:

   \[
   \theta + C = \sin^{-1} \left(\frac{x}{4}\right) + C
   \]

Thus, the solution to the integral is:

\[
\int \frac{dx}{\sqrt{16 - x^2}} = \sin^{-1} \left(\frac{x}{4}\right) + C
\]

**Notes:**
- This solution uses trigonometric substitution to evaluate the integral.
- The derivative and back-substitution steps ensure the solution is in terms of \( x \).
Transcribed Image Text:**Integration Exercise Example** **Problem:** Evaluate the integral: \[ \int \frac{dx}{\sqrt{16 - x^2}} \] **Solution:** 1. **Substitution:** Let \( x = 4 \sin \theta \), so that \( dx = 4 \cos \theta \, d\theta \). 2. **Simplification:** Note that: \[ \sqrt{16 - x^2} = \sqrt{16 - (4 \sin \theta)^2} = \sqrt{16(1 - \sin^2 \theta)} = \sqrt{16 \cos^2 \theta} = 4 \cos \theta \] 3. **Integral Transformation:** Rewrite the integral as: \[ \int \frac{1}{\sqrt{16 - x^2}} \, dx = \int \frac{4 \cos \theta}{4 \cos \theta} \, d\theta = \int d\theta \] 4. **Integration:** \[ = \theta + C \] 5. **Back-Substitute:** Since \( \theta = \sin^{-1} \left(\frac{x}{4}\right) \), we have: \[ \theta + C = \sin^{-1} \left(\frac{x}{4}\right) + C \] Thus, the solution to the integral is: \[ \int \frac{dx}{\sqrt{16 - x^2}} = \sin^{-1} \left(\frac{x}{4}\right) + C \] **Notes:** - This solution uses trigonometric substitution to evaluate the integral. - The derivative and back-substitution steps ensure the solution is in terms of \( x \).
Expert Solution
Step 1

Calculus homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning