for x <0 for 0 1 X, Consider f (x) (2 х, These following statements are true for f (x), except.... jika x < 0 jika 0 < x <1 jika x > 1 X, Diketahui suatu fungsi f (x) (2 – x, Pernyataan tentang f(x) ini adalah benar, kecuali .. 1. O f(x) discontinuous at x = 1. f(x) tak kontinu di x = 1 2. O f(x) continuous at x = 2 f(x) kontinu di x = 2 3. O f(x) continuous at x = 0 f(x) kontinu di x = 0 4. O f(x) continuous at x = 1 f(x) kontinu di x = 1

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
for x <0
for 0<x <1
for x > 1
X,
Consider f (x) =
x2,
(2 – x,
These following statements are true for f (x), except....
jika x < 0
jika 0 < x < 1
jika x > 1
х,
Diketahui suatu fungsi f (x) =
x2,
-
Pernyataan tentang f (x) ini adalah benar, kecuali ....
1. O f(x) discontinuous at x = 1.
f(x) tak kontinu di x = 1
2. O f(x) continuous at x = 2
f(x) kontinu di x = 2
3. O f(x) continuous at x = 0
f(x) kontinu di x = 0
4. O f(x) continuous at x = 1
f(x) kontinu di x = 1
Transcribed Image Text:for x <0 for 0<x <1 for x > 1 X, Consider f (x) = x2, (2 – x, These following statements are true for f (x), except.... jika x < 0 jika 0 < x < 1 jika x > 1 х, Diketahui suatu fungsi f (x) = x2, - Pernyataan tentang f (x) ini adalah benar, kecuali .... 1. O f(x) discontinuous at x = 1. f(x) tak kontinu di x = 1 2. O f(x) continuous at x = 2 f(x) kontinu di x = 2 3. O f(x) continuous at x = 0 f(x) kontinu di x = 0 4. O f(x) continuous at x = 1 f(x) kontinu di x = 1
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,