For what values of h are the vectors 1 1 1 2 2 h+1 linearly dependent? 1 3 4 h+2 " and h = −1 and h = 1 No such values for h. h = -1 8 h²-h+4] h can be any real numbers. 1 4

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Solve this linear algebra multiple chhoice question, it deals with linear indepence and dependence.

**Question:**

For what values of \( h \) are the vectors
\[
\begin{bmatrix}
1 \\
1 \\
1 \\
h
\end{bmatrix},
\begin{bmatrix}
1 \\
2 \\
2 \\
h+1
\end{bmatrix},
\begin{bmatrix}
1 \\
3 \\
4 \\
h+2
\end{bmatrix},
\begin{bmatrix}
1 \\
4 \\
8 \\
h^2 - h+4
\end{bmatrix}
\]
linearly dependent?

**Options:**

1. \(\boxed{h = -1 \text{ and } h = 1}\)
2. No such values for \( h \).
3. \( h \) can be any real number.
4. \( h = -1 \)
5. \( h = 1 \)

**Answer:**

\[
\boxed{h = -1 \text{ and } h = 1}
\]
Transcribed Image Text:**Question:** For what values of \( h \) are the vectors \[ \begin{bmatrix} 1 \\ 1 \\ 1 \\ h \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2 \\ h+1 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 4 \\ h+2 \end{bmatrix}, \begin{bmatrix} 1 \\ 4 \\ 8 \\ h^2 - h+4 \end{bmatrix} \] linearly dependent? **Options:** 1. \(\boxed{h = -1 \text{ and } h = 1}\) 2. No such values for \( h \). 3. \( h \) can be any real number. 4. \( h = -1 \) 5. \( h = 1 \) **Answer:** \[ \boxed{h = -1 \text{ and } h = 1} \]
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,