For this assignment you need to write a parallel program in C++ using OpenMP for vector addition. Assume A, B, C are three vectors of equal length. The program will add the corresponding elements of vectors A and B and will store the sum in the corresponding elements in vector C (in other words C[i] = A[i] + B[i]). Every thread should execute approximately equal number of loop iterations. The only OpenMP directive you are allowed to use is: #pragma omp parallel num_threads(no of threads) The program should take n and the number of threads to use as command line arguments: ./parallel_vector_addition Where n is the length of the vectors and threads is the number of threads to be created. Pseudocode for Assignment mystart = myid*n/p; // starting index for the individual thread myend = mystart+n/p; // ending index for the individual thread for (i = mystart; i < myend; i++) // each thread computes local sum do vector addition // and later all local sums combined.

Computer Networking: A Top-Down Approach (7th Edition)
7th Edition
ISBN:9780133594140
Author:James Kurose, Keith Ross
Publisher:James Kurose, Keith Ross
Chapter1: Computer Networks And The Internet
Section: Chapter Questions
Problem R1RQ: What is the difference between a host and an end system? List several different types of end...
icon
Related questions
Question

For this assignment you need to write a parallel program in C++ using OpenMP for vector addition. Assume A, B, C are three vectors of equal length. The program will add the corresponding elements of vectors A and B and will store the sum in the corresponding elements in vector C (in other words C[i] = A[i] + B[i]). Every thread should execute approximately equal number of loop iterations. The only OpenMP directive you are allowed to use is: #pragma omp parallel num_threads(no of threads) The program should take n and the number of threads to use as command line arguments: ./parallel_vector_addition Where n is the length of the vectors and threads is the number of threads to be created. Pseudocode for Assignment mystart = myid*n/p; // starting index for the individual thread myend = mystart+n/p; // ending index for the individual thread for (i = mystart; i < myend; i++) // each thread computes local sum do vector addition // and later all local sums combined.

 

As an input vector A, initialize its size to 10,000 and elements from 1 to 10,000.
So, A[0] = 1, A[1] = 2, A[2] = 3, … , A[9999] = 10000.
Input vector B will be initialized to the same size with opposite inputs.
So, B[0] = 10000, B[1] = 9999, B[2] = 9998, … , B[9999] = 1
Using above input vectors A and B, create output Vector C which will be computed as
C[ i ] = A[ i ] + B[ i ];
You should check whether your output vector value is 10001 in every C[ i ].
First, start with 2 threads (each thread adding 5,000 vectors), and then do with 4,and and 8
threads. Remember sometimes your vector size can not be divided equally by number of threads.
You need to slightly modify pseudo code to handle the situation accordingly. (Hint: If you have p
threads, first (p - 1) threads should have equal number of input size and the last thread will take
care of whatever the remainder portion.) Check the running time from each experiment and
compare the result. Report your findings from this project in a separate paragraph.
Your output should show team of treads do evenly distributed work, but big vector size might
cause an issue in output. You can create mini version of original vector in much smaller size of
100 (A[0] = 1, A[1] = 2, A[2] = 3, … , A[99] = 100) and run with 6 threads once and take a snap
shop of your output. And run with original size with 2, 4, and 8 threads to compare running times.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
Computer Networking: A Top-Down Approach (7th Edi…
Computer Networking: A Top-Down Approach (7th Edi…
Computer Engineering
ISBN:
9780133594140
Author:
James Kurose, Keith Ross
Publisher:
PEARSON
Computer Organization and Design MIPS Edition, Fi…
Computer Organization and Design MIPS Edition, Fi…
Computer Engineering
ISBN:
9780124077263
Author:
David A. Patterson, John L. Hennessy
Publisher:
Elsevier Science
Network+ Guide to Networks (MindTap Course List)
Network+ Guide to Networks (MindTap Course List)
Computer Engineering
ISBN:
9781337569330
Author:
Jill West, Tamara Dean, Jean Andrews
Publisher:
Cengage Learning
Concepts of Database Management
Concepts of Database Management
Computer Engineering
ISBN:
9781337093422
Author:
Joy L. Starks, Philip J. Pratt, Mary Z. Last
Publisher:
Cengage Learning
Prelude to Programming
Prelude to Programming
Computer Engineering
ISBN:
9780133750423
Author:
VENIT, Stewart
Publisher:
Pearson Education
Sc Business Data Communications and Networking, T…
Sc Business Data Communications and Networking, T…
Computer Engineering
ISBN:
9781119368830
Author:
FITZGERALD
Publisher:
WILEY