For the simply supported beam subjected to the loading shown, derive equations for the shear force V and the bending moment M for any location in the beam. (Place the origin at point A.) Let w = 19.5 kips/ft, a=6.0 ft, and b=21.5 ft. Construct the shear-force and bending-moment diagrams on paper and use the results to answer the questions in the subsequent parts of this GO exercise. Calculate the reaction forces By and Cy acting on the beam. Positive values for the reactions are indicated by the directions of the red arrows shown on the free-body diagram below. (Note: Since Bx = 0, it has been omitted from the free-body diagram.) Use your shear-force and bending-moment diagrams to determine the maximum positive bending moment, Mmax, pos, the maximum negative bending moment, Mmax, neg, and their respective locations, xmax, pos and xmax, neg. Use the bending-moment sign convention detailed in Section 7.2. The maximum negative bending moment is the negative moment with the largest absolute value. Enter the maximum negative bending moment as a negative value. Answers: Mmax, pos = kips-ft, , xmax, pos = ft Mmax, neg = kips-ft, xmax, neg = ft
For the simply supported beam subjected to the loading shown, derive equations for the shear force V and the bending moment M for any location in the beam. (Place the origin at point A.) Let w = 19.5 kips/ft, a=6.0 ft, and b=21.5 ft. Construct the shear-force and bending-moment diagrams on paper and use the results to answer the questions in the subsequent parts of this GO exercise.
Calculate the reaction forces By and Cy acting on the beam. Positive values for the reactions are indicated by the directions of the red arrows shown on the free-body diagram below. (Note: Since Bx = 0, it has been omitted from the free-body diagram.)
Use your shear-force and bending-moment diagrams to determine the maximum positive bending moment, Mmax, pos, the maximum negative bending moment, Mmax, neg, and their respective locations, xmax, pos and xmax, neg. Use the bending-moment sign convention detailed in Section 7.2. The maximum negative bending moment is the negative moment with the largest absolute value. Enter the maximum negative bending moment as a negative value.
Answers:
Mmax, pos = | kips-ft, , | xmax, pos = | ft |
Mmax, neg = | kips-ft, | xmax, neg = | ft |
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images