For the next two exercises, use the Root Test to determine if each series converges or diverges. n+1 3 ¹Σ (-m (e² + 1))*** (-1)" 4 n=1 nl+n n=2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Hello,

Can someone show to solve problem 4 using the root test?

Thank you!

### Series Convergence Tests

For the next two exercises, use the Ratio Test to determine if each series converges or diverges.

**Exercise 1**
Find the convergence or divergence of the series:
\[ \sum_{n=1}^{\infty} \frac{(-1)^n (n+2)}{3^n} \]

**Exercise 2**
Find the convergence or divergence of the series:
\[ \sum_{n=2}^{\infty} \frac{3n + 2}{\ln n} \]

For the next two exercises, use the Root Test to determine if each series converges or diverges.

**Exercise 3**
Find the convergence or divergence of the series:
\[ \sum_{n=1}^{\infty} \left( -\ln \left( e^2 + \frac{1}{n} \right) \right)^{n+1} \]

**Exercise 4**
Find the convergence or divergence of the series:
\[ \sum_{n=2}^{\infty} \frac{(-1)^n}{n^{1+n}} \]

**Exercise 5**
Determine if the series converges or diverges:
\[ \sum_{n=1}^{\infty} \left( \frac{n-2}{n} \right)^n \]
Transcribed Image Text:### Series Convergence Tests For the next two exercises, use the Ratio Test to determine if each series converges or diverges. **Exercise 1** Find the convergence or divergence of the series: \[ \sum_{n=1}^{\infty} \frac{(-1)^n (n+2)}{3^n} \] **Exercise 2** Find the convergence or divergence of the series: \[ \sum_{n=2}^{\infty} \frac{3n + 2}{\ln n} \] For the next two exercises, use the Root Test to determine if each series converges or diverges. **Exercise 3** Find the convergence or divergence of the series: \[ \sum_{n=1}^{\infty} \left( -\ln \left( e^2 + \frac{1}{n} \right) \right)^{n+1} \] **Exercise 4** Find the convergence or divergence of the series: \[ \sum_{n=2}^{\infty} \frac{(-1)^n}{n^{1+n}} \] **Exercise 5** Determine if the series converges or diverges: \[ \sum_{n=1}^{\infty} \left( \frac{n-2}{n} \right)^n \]
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,