For the given matrices A and B, Fill up the blank on C=AB by using Partitioning matrices method. ONLY USE REQUIRED PART OF A AND B TO COMPUTE THE MISSING PART ON C! NOT THE WHLE A AND B MATRICES! A= C = 1 2 2 3 5 3 1 >> C=A*B 24 28 33 34 -1 1 3-1 2 3 2 26 38 2 4 5 27 4 4 6 6 7 42 54 and 2 B = 1 48 33 11 74 79 2 1 5 1 2 40 5 42 54 3 4 3 2 4 2 3 5 4 -1
For the given matrices A and B, Fill up the blank on C=AB by using Partitioning matrices method. ONLY USE REQUIRED PART OF A AND B TO COMPUTE THE MISSING PART ON C! NOT THE WHLE A AND B MATRICES! A= C = 1 2 2 3 5 3 1 >> C=A*B 24 28 33 34 -1 1 3-1 2 3 2 26 38 2 4 5 27 4 4 6 6 7 42 54 and 2 B = 1 48 33 11 74 79 2 1 5 1 2 40 5 42 54 3 4 3 2 4 2 3 5 4 -1
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
MATLAB SCRIPT PLEASE!
![**Matrix Multiplication Using Partitioning Matrices Method**
**Problem Statement:**
For the given matrices \( A \) and \( B \), fill up the blank on \( C = AB \) by using the Partitioning Matrices method.
**Note:**
- Only use the required part of matrices \( A \) and \( B \) to compute the missing part of matrix \( C \).
- Do not use the entire matrices \( A \) and \( B \).
**Given Matrices:**
\[
A = \begin{pmatrix}
2 & 1 & 3 & 4 & -1 \\
1 & 2 & -1 & 1 & 4 \\
3 & 1 & 2 & 1 & 1 \\
-5 & -1 & 4 & 7 & 2 \\
-1 & 2 & 1 & -4 & 6
\end{pmatrix}
\]
\[
B = \begin{pmatrix}
1 & 2 & 3 & 4 \\
1 & 2 & 1 & 3 \\
2 & 1 & 2 & 5 \\
3 & 2 & 1 & 2 \\
4 & 2 & 6 & 1
\end{pmatrix}
\]
**Solution:**
Using the partitioning matrices method, we need to find the missing elements of matrix \( C \):
\[
C = A * B
\]
Given partial matrix \( C \):
\[
C = \begin{pmatrix}
48 & 40 & & \\
33 & 5 & & \\
24 & 26 & 42 & \\
28 & 38 & 54 & \\
33 & 34 & 42 & \\
33 & 74 & 79 & 54
\end{pmatrix}
\]
**Method:**
To find the missing parts of matrix \( C \), we need to multiply the relevant parts of matrices \( A \) and \( B \).
Calculate:
- For \( c_{1, 1} \), \( c_{1, 2} \)
\[
c_{1, 1} = 2*1 + 1*1 + 3*2 + 4*3 + (-1)*4 = 48
\]
\[
c_{1, 2](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fecd9d238-92a1-4a47-af9e-c758e887edd1%2Fe5690a22-fe5e-4fe3-bf55-a61f1308cdd0%2Fdqsl36g_processed.png&w=3840&q=75)
Transcribed Image Text:**Matrix Multiplication Using Partitioning Matrices Method**
**Problem Statement:**
For the given matrices \( A \) and \( B \), fill up the blank on \( C = AB \) by using the Partitioning Matrices method.
**Note:**
- Only use the required part of matrices \( A \) and \( B \) to compute the missing part of matrix \( C \).
- Do not use the entire matrices \( A \) and \( B \).
**Given Matrices:**
\[
A = \begin{pmatrix}
2 & 1 & 3 & 4 & -1 \\
1 & 2 & -1 & 1 & 4 \\
3 & 1 & 2 & 1 & 1 \\
-5 & -1 & 4 & 7 & 2 \\
-1 & 2 & 1 & -4 & 6
\end{pmatrix}
\]
\[
B = \begin{pmatrix}
1 & 2 & 3 & 4 \\
1 & 2 & 1 & 3 \\
2 & 1 & 2 & 5 \\
3 & 2 & 1 & 2 \\
4 & 2 & 6 & 1
\end{pmatrix}
\]
**Solution:**
Using the partitioning matrices method, we need to find the missing elements of matrix \( C \):
\[
C = A * B
\]
Given partial matrix \( C \):
\[
C = \begin{pmatrix}
48 & 40 & & \\
33 & 5 & & \\
24 & 26 & 42 & \\
28 & 38 & 54 & \\
33 & 34 & 42 & \\
33 & 74 & 79 & 54
\end{pmatrix}
\]
**Method:**
To find the missing parts of matrix \( C \), we need to multiply the relevant parts of matrices \( A \) and \( B \).
Calculate:
- For \( c_{1, 1} \), \( c_{1, 2} \)
\[
c_{1, 1} = 2*1 + 1*1 + 3*2 + 4*3 + (-1)*4 = 48
\]
\[
c_{1, 2
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Step 1: Determining the matrices A and B
VIEWStep 2: Calculation of the elements in the first row C11,C12,C13
VIEWStep 3: Calculation of the elements in the second row C21,C22,C23
VIEWStep 4: Calculation of the elements in third and fourth rows C34,C35,C44,C45
VIEWStep 5: Calculation of the elements in the fifth and sixth rows C52,C53,C62,C63
VIEWSolution
VIEWTrending now
This is a popular solution!
Step by step
Solved in 6 steps with 31 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question
How to implement this solution in MATLAB? Thank you!
Solution
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)