For the given fuzzy sets, prove the associcativity and distributivity property 0.65 0.4 0.35 Ã + (1.0 3.0) 2.5 0.25 + 2.5 0.25 + 2.5 1.5 2.0 0.25 0.6 + (1.0 + 1.5 2.0 - 3.0) 0.5) 3.05 - Ā (B U Č) = (Ã U B) U Č - Ãn (B U C) = (Ā O B)U (Ãn Ĉ) (0.5 0.25 + 1.5 (1.0 2.0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
6) For the given fuzzy sets, prove the associcativity and distributivity property
1
0.65 0.4 0.35
+
1.5
0.25
+
1.5
0.25
+
1.5
-
(1.0
2.0
0.6
2.5 ' 3.0)
0.25
1
+
3.0)
(1.0
2.0
2.5
S0.5
Č =
(1.0
0.25, 0.5)
+
3.0)
2.0
2.5
- Ā (B U Č) = (Ã U B) U Č
- Ãn (B UC) = (ÃN B)U (ÃN Ĉ)
7) Given the fuzzy set à = {++
0.1
0.8
+0 defined in the universe of discourse X =
4
{1,2,3,4,5}. Prove why law of excluded middle and law of contradiction does not hold
good for fuzzy set.
Transcribed Image Text:6) For the given fuzzy sets, prove the associcativity and distributivity property 1 0.65 0.4 0.35 + 1.5 0.25 + 1.5 0.25 + 1.5 - (1.0 2.0 0.6 2.5 ' 3.0) 0.25 1 + 3.0) (1.0 2.0 2.5 S0.5 Č = (1.0 0.25, 0.5) + 3.0) 2.0 2.5 - Ā (B U Č) = (à U B) U Č - Ãn (B UC) = (ÃN B)U (ÃN Ĉ) 7) Given the fuzzy set à = {++ 0.1 0.8 +0 defined in the universe of discourse X = 4 {1,2,3,4,5}. Prove why law of excluded middle and law of contradiction does not hold good for fuzzy set.
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,