For the function given below, find a formula for the Riemann sum obtained by dividing the interval (a.b] into n equal subintervals and using the right-hand endpoint for eacho,. Then take a limit of this sum as n+ o to calculate the area under the curve over [a,b). f(x) = 4x over the interval [2,6). Find a formula for the Riemann sum. The area under the curve over [2,8] is square units. (Simplify your answer.)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Understanding Riemann Sums and Area Under the Curve**

For the function given below, find a formula for the Riemann sum obtained by dividing the interval \([a,b]\) into n equal subintervals and using the right-hand endpoint for each \(n\). Then take a limit of this sum as \(n \rightarrow \infty\) to calculate the area under the curve over \([a,b]\).

Given Function:
\[ f(x) = 4x \] 
over the interval \([2, 8]\).

### Step-by-Step Process

1. **Define the Subintervals**:
    - Divide the interval \([2, 8]\) into \(n\) equal subintervals.
    - Each subinterval has a width \(\Delta x = \frac{8 - 2}{n} = \frac{6}{n}\).

2. **Identify the Right-End Points**:
    - The right-end points of the subintervals can be defined as:
    \[
    x_i = 2 + i \cdot \Delta x = 2 + i \cdot \frac{6}{n}
    \]
    where \(i=1, 2, ..., n\).

3. **Set Up the Riemann Sum**:
    - Using the right-end points, the Riemann sum \(S_n\) is:
    \[
    S_n = \sum_{i=1}^n f(x_i) \cdot \Delta x
    = \sum_{i=1}^n 4 \left( 2 + i \cdot \frac{6}{n} \right) \cdot \frac{6}{n}
    \]

4. **Simplify the Sum**:
    \[
    S_n = 4 \cdot \frac{6}{n} \sum_{i=1}^n \left( 2 + i \cdot \frac{6}{n} \right)
    = \frac{24}{n} \sum_{i=1}^n \left( 2 + \frac{6i}{n} \right)
    \]
    Distribute and split the sum:
    \[
    S_n = \frac{24}{n} \sum_{i=1}^n 2 + \frac{24}{n}
Transcribed Image Text:**Understanding Riemann Sums and Area Under the Curve** For the function given below, find a formula for the Riemann sum obtained by dividing the interval \([a,b]\) into n equal subintervals and using the right-hand endpoint for each \(n\). Then take a limit of this sum as \(n \rightarrow \infty\) to calculate the area under the curve over \([a,b]\). Given Function: \[ f(x) = 4x \] over the interval \([2, 8]\). ### Step-by-Step Process 1. **Define the Subintervals**: - Divide the interval \([2, 8]\) into \(n\) equal subintervals. - Each subinterval has a width \(\Delta x = \frac{8 - 2}{n} = \frac{6}{n}\). 2. **Identify the Right-End Points**: - The right-end points of the subintervals can be defined as: \[ x_i = 2 + i \cdot \Delta x = 2 + i \cdot \frac{6}{n} \] where \(i=1, 2, ..., n\). 3. **Set Up the Riemann Sum**: - Using the right-end points, the Riemann sum \(S_n\) is: \[ S_n = \sum_{i=1}^n f(x_i) \cdot \Delta x = \sum_{i=1}^n 4 \left( 2 + i \cdot \frac{6}{n} \right) \cdot \frac{6}{n} \] 4. **Simplify the Sum**: \[ S_n = 4 \cdot \frac{6}{n} \sum_{i=1}^n \left( 2 + i \cdot \frac{6}{n} \right) = \frac{24}{n} \sum_{i=1}^n \left( 2 + \frac{6i}{n} \right) \] Distribute and split the sum: \[ S_n = \frac{24}{n} \sum_{i=1}^n 2 + \frac{24}{n}
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 29 images

Blurred answer
Knowledge Booster
Area
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,