For the function f(x) = In (1 + 2x), find the Taylor polynomials of orders 0, 1, 2, and 3 generated by f at a = 0.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
For the function f(x) = In (1 + 2x), find the Taylor polynomials of orders 0, 1, 2, and 3 generated by fat a = 0.
Po(x) =
Transcribed Image Text:For the function f(x) = In (1 + 2x), find the Taylor polynomials of orders 0, 1, 2, and 3 generated by fat a = 0. Po(x) =
Expert Solution
Step 1: Finding the Taylor series expansion

The Taylor series expansion of fa+x is given by 

    fa+x=fa+xf'a+x22f"(a)+x33!f'''(a)+...+xn-1n-1!fn-1a+Rna=0      fx=fa+xf'0+x22f"(0)+x33!f'''(0)+...+xn-1n-1!fn-10+Rn     ....i

Given fx=ln1+2x

Now 

   fx=ln1+2xf0=0  f'x=21+2xf'0=2    f"(x)=-41+2x2  f"(0)=-4     f'''x=161+2x3f'''x=16

fx=ln1+2x

Taylor series polynomial of order n=0

Using formula 1

fx=0

Taylor series polynomial of order n=1

Using formula 1

     fx=0+2xfx=2x

Taylor series polynomial of order n=2

Using formula 1

fx=0+2x+x22-4       =2x-2x2

Taylor series polynomial of order n=3

Using formula 1

fx=0+2x-2x2+x3616      =2x-2x2+83x3

 

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,