For the following sorting algorithm, find the number of recursive calls (excluding the initial function call) for RECURSIVESORT({3, 5, 12, 4, 8}, 5) and show the contents of the array after each recursive call. SWAP (i, j) is an externally defined function that swaps the elements of A at indices i and j • LEN(A) is an externally defined function that returns the number of elements in the array (length) 1: function RECURSIVESORT(A, n) 2: if n 3: 4: 5: 6: 7: 8: 9: 10: 11: 12: 13: 14: 15: 16: 17: 18: 19: return RECURSIVESORT(A, n - 1) 20: end function 1 then x = 0 y := LEN(A) - 1 while x < y do SWAP (x, y) x = x + 1 end if y = y 1 end while return A for i in [0, n 1) do if A[i] < A[i+1] then SWAP (i, i + 1) end if end for
For the following sorting algorithm, find the number of recursive calls (excluding the initial function call) for RECURSIVESORT({3, 5, 12, 4, 8}, 5) and show the contents of the array after each recursive call. SWAP (i, j) is an externally defined function that swaps the elements of A at indices i and j • LEN(A) is an externally defined function that returns the number of elements in the array (length) 1: function RECURSIVESORT(A, n) 2: if n 3: 4: 5: 6: 7: 8: 9: 10: 11: 12: 13: 14: 15: 16: 17: 18: 19: return RECURSIVESORT(A, n - 1) 20: end function 1 then x = 0 y := LEN(A) - 1 while x < y do SWAP (x, y) x = x + 1 end if y = y 1 end while return A for i in [0, n 1) do if A[i] < A[i+1] then SWAP (i, i + 1) end if end for
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Discrete maths
![For the following sorting algorithm, find the number of recursive calls (excluding the initial
function call) for RECURSIVESORT({3, 5, 12, 4, 8}, 5) and show the contents of the array after
each recursive call.
●
SWAP (i, j) is an externally defined function that swaps the elements of A at indices i
and j
• LEN(A) is an externally defined function that returns the number of elements in the
array (length)
1: function RECURSIVESORT(A, n)
2:
if n = 1 then
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19: return RECURSIVESORT(A, n − 1)
20: end function
x := 0
y := LEN(A) -1
while x < y do
SWAP (x, y)
x = x + 1
y = y 1
end while
return A
end if
for i in [0, n 1) do
if A[i] < A[i+1] then
SWAP (i, i + 1)
end if
end for](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F4346761a-0140-452b-a6bd-a6a1421e4117%2F37955fe3-36d4-404a-ad86-e4e9bc0a8152%2Fovbwz2x_processed.png&w=3840&q=75)
Transcribed Image Text:For the following sorting algorithm, find the number of recursive calls (excluding the initial
function call) for RECURSIVESORT({3, 5, 12, 4, 8}, 5) and show the contents of the array after
each recursive call.
●
SWAP (i, j) is an externally defined function that swaps the elements of A at indices i
and j
• LEN(A) is an externally defined function that returns the number of elements in the
array (length)
1: function RECURSIVESORT(A, n)
2:
if n = 1 then
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19: return RECURSIVESORT(A, n − 1)
20: end function
x := 0
y := LEN(A) -1
while x < y do
SWAP (x, y)
x = x + 1
y = y 1
end while
return A
end if
for i in [0, n 1) do
if A[i] < A[i+1] then
SWAP (i, i + 1)
end if
end for
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)