For the following function: f(t) = 5+2 cos(2πt - 90) + 3cos4πt Let us sample the signal f (t) at 4 times per second (f = 4 Hz) for (t = 0 →³). The value of discrete samples are given by: f(k) = 5 + 2 cos(k − 90) + 3cosnk
For the following function: f(t) = 5+2 cos(2πt - 90) + 3cos4πt Let us sample the signal f (t) at 4 times per second (f = 4 Hz) for (t = 0 →³). The value of discrete samples are given by: f(k) = 5 + 2 cos(k − 90) + 3cosnk
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![For the following function:
f (t) = 5 + 2 cos(2nt – 90) + 3cos4nt
-
Let us sample the signal f(t) at 4 times per second (f , = 4 Hz) for (t = 0 → →).
S
The value of discrete samples are given by:
f(k) = 5 + 2 cos (k – 90) + 3cosrk
%3D
k
Where t = kT,
4
%D
Compute the discrete Fourier transform](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Feb8f4df0-5225-4dd6-abc9-942fe1da0641%2Fd49dd0aa-5eb0-48e1-b880-6c0519ef1af5%2Fbbljuv_processed.jpeg&w=3840&q=75)
Transcribed Image Text:For the following function:
f (t) = 5 + 2 cos(2nt – 90) + 3cos4nt
-
Let us sample the signal f(t) at 4 times per second (f , = 4 Hz) for (t = 0 → →).
S
The value of discrete samples are given by:
f(k) = 5 + 2 cos (k – 90) + 3cosrk
%3D
k
Where t = kT,
4
%D
Compute the discrete Fourier transform
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)