For the first few problems in this set, let (3) 1 F₁ = 0 F₂: = 1. Let S denote the unit sphere cos u sin v sin u sin v COS U T(u, v) = F3 = and compute (a) ff F₁-d5 (b) ff F₂-d5 (c) ff F3 dS (d) ffs F₁-dS (e) ffs F5-d5 F₁ = = F₁ = 0 < u < 2π, 0 Συ<π Y -X 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Could you do 1c and show steps. I would gre

For the first few problems in this set, let

\[
\vec{F}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \vec{F}_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \quad \vec{F}_3 = \begin{pmatrix} x^2 \\ y^2 \\ z^2 \end{pmatrix}, \quad \vec{F}_4 = \begin{pmatrix} x \\ 0 \\ 0 \end{pmatrix}, \quad \vec{F}_5 = \begin{pmatrix} y \\ -x \\ 0 \end{pmatrix}
\]

1. Let \( S \) denote the unit sphere

\[
\vec{T}(u, v) = \begin{pmatrix} \cos u \sin v \\ \sin u \sin v \\ \cos v \end{pmatrix}, \quad 0 \leq u \leq 2\pi, \, 0 \leq v \leq \pi
\]

and compute

(a) \( \iint_S \vec{F}_1 \cdot d\vec{S} \)

(b) \( \iint_S \vec{F}_2 \cdot d\vec{S} \)

(c) \( \iint_S \vec{F}_3 \cdot d\vec{S} \)

(d) \( \iint_S \vec{F}_4 \cdot d\vec{S} \)

(e) \( \iint_S \vec{F}_5 \cdot d\vec{S} \)
Transcribed Image Text:For the first few problems in this set, let \[ \vec{F}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \vec{F}_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \quad \vec{F}_3 = \begin{pmatrix} x^2 \\ y^2 \\ z^2 \end{pmatrix}, \quad \vec{F}_4 = \begin{pmatrix} x \\ 0 \\ 0 \end{pmatrix}, \quad \vec{F}_5 = \begin{pmatrix} y \\ -x \\ 0 \end{pmatrix} \] 1. Let \( S \) denote the unit sphere \[ \vec{T}(u, v) = \begin{pmatrix} \cos u \sin v \\ \sin u \sin v \\ \cos v \end{pmatrix}, \quad 0 \leq u \leq 2\pi, \, 0 \leq v \leq \pi \] and compute (a) \( \iint_S \vec{F}_1 \cdot d\vec{S} \) (b) \( \iint_S \vec{F}_2 \cdot d\vec{S} \) (c) \( \iint_S \vec{F}_3 \cdot d\vec{S} \) (d) \( \iint_S \vec{F}_4 \cdot d\vec{S} \) (e) \( \iint_S \vec{F}_5 \cdot d\vec{S} \)
Expert Solution
Step 1: Finding unit normal of the surface

Given a parametrization of the unit sphere, S

T(u,v)=(cosusinvsinusinvcosv)

Partial derivatives:

Tu=(sinusinvcosusinv0)  ,  Tv=(cosucosvsinucosvsinv)


Tu×Tv=|ijksinusinvcosusinv0cosucosvsinucosvsinv|=(cosusin2v)i(sinusin2v)j(cosvsinv)k


|Tu×Tv|=cos2usin4v+sin2usin4v+sin2vcos2v=sinv

Unit vector n=Tu×Tv|Tu×Tv|=(cosusinv)i+(sinusinv)j+(cosv)k


trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,