For on f (x) = ln (x + 1) and let x_0 = 0: x_1 = 0.6; x_2 = 0.9 construct the Lagrange polynomial of degree one and the Lagrange polynomial of degree two to approximate the value of f (0.45) use that of one to find the absolute error

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

For on f (x) = ln (x + 1) and let x_0 = 0: x_1 = 0.6; x_2 = 0.9 construct the Lagrange polynomial of degree one and the Lagrange polynomial of degree two to approximate the value of f (0.45) use that of one to find the absolute error

Para la funcion f(x)=In(x+1) y sea Xo=0;x,=0.6; x2=0.9 construya el polinomio
de Lagrange de grado uno y el polinomio de Lagrange de grado dos. para aproximar
el valor de f(0.45) utilice el polinomio de grado uno, para encontrar el error
absoluto.
Seleccione una:
a. P1(x) =0.874548x; P2(x) = -0.268961x2 +0.955236x; P1(0.45) =0.5939;
|f(0.45)-P1(0.45)|=0.0212983
Ob.
1. P1(x) =0.874548x; P2(x) = -x+0.955236x; P1(0.45) =0.393546;
|f(0.45)-P1(0.45)|=0.0212983
O c.C. P1(x) =0.874548x; P2(x) = -0.268961x2+0.955236x; P1(0.45)
=0.393546; |f(0.45)-P1(0.45)|=0.2
o d. P1(x) =0.874548; P2(x) = -0.268961x2 +0.955236x; P1(0.45) =0.393546;
|f(0.45)-P1(0.45)|=0.0212983
O e. P1(x) =0.874548x; P2(x) = -0.268961x2+0.955236x; P1(0.45)
=0.393546; |f(0.45)-P1(0.45)I=0.0212983
Transcribed Image Text:Para la funcion f(x)=In(x+1) y sea Xo=0;x,=0.6; x2=0.9 construya el polinomio de Lagrange de grado uno y el polinomio de Lagrange de grado dos. para aproximar el valor de f(0.45) utilice el polinomio de grado uno, para encontrar el error absoluto. Seleccione una: a. P1(x) =0.874548x; P2(x) = -0.268961x2 +0.955236x; P1(0.45) =0.5939; |f(0.45)-P1(0.45)|=0.0212983 Ob. 1. P1(x) =0.874548x; P2(x) = -x+0.955236x; P1(0.45) =0.393546; |f(0.45)-P1(0.45)|=0.0212983 O c.C. P1(x) =0.874548x; P2(x) = -0.268961x2+0.955236x; P1(0.45) =0.393546; |f(0.45)-P1(0.45)|=0.2 o d. P1(x) =0.874548; P2(x) = -0.268961x2 +0.955236x; P1(0.45) =0.393546; |f(0.45)-P1(0.45)|=0.0212983 O e. P1(x) =0.874548x; P2(x) = -0.268961x2+0.955236x; P1(0.45) =0.393546; |f(0.45)-P1(0.45)I=0.0212983
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,