For either a monatomic ideal gas or a high-temperature Einstein solid, the entropy is given by Nk times some logarithm. The logarithm is never large, so if all you want is an order-of-magnitude estimate, you can neglect it and just say S - Nk. That is, the entropy in fundamental units is of the order of the rv number of particles in the system. This conclusion turns out to be true for most systems (with some important exceptions at low temperatures where the particles are behaving in an orderly way). So just for fun, make a very rough estimate of the entropy of each of the following: this book (a kilogram of carbon compounds); a moose (400 kg of water); the sun (2 x 1030 kg of ionized hydrogen).
For either a monatomic ideal gas or a high-temperature Einstein solid, the entropy is given by Nk times some logarithm. The logarithm is never large, so if all you want is an order-of-magnitude estimate, you can neglect it and just say S - Nk. That is, the entropy in fundamental units is of the order of the rv number of particles in the system. This conclusion turns out to be true for most systems (with some important exceptions at low temperatures where the particles are behaving in an orderly way). So just for fun, make a very rough estimate of the entropy of each of the following: this book (a kilogram of carbon compounds); a moose (400 kg of water); the sun (2 x 1030 kg of ionized hydrogen).
Trending now
This is a popular solution!
Step by step
Solved in 2 steps