For each of the following quadratic forms, write down the symmetric coefficient matrix A such that Q = VAT and v = [X₁ X₂ ... Xn]. (a) Q (x, y, z) = −x² + 5 xy + 2y² + 2xz+3yz-3 z², (b) Q (x, y) = 2 x² + 4xy + 4y², (c) Q (x, y, z) = −5 x² + 5 x y − 3y² + 5x z + y z + 4 z², A = A = A =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
For each of the following quadratic forms, write down the symmetric coefficient matrix A such that Q = vAv¹ and
V = [X₁ X₂
Xn].
(a) Q (x, y, z) = -x² + 5 xy + 2y² + 2xz+3yz-3 z²,
(b) Q (x, y) = 2 x² + 4 xy + 4y²,
(c) Q (x, y, z) = -5x² + 5xy-3y² + 5xz+yz +4z²,
(d) Q (w, x, y, z) = −w² + 2 x² + 2 wy+xy − 5 y² − 5 w z - 4 xz - 5 y z + 3 z²,
(e) Q (x, y) = -2x² + 5xy-4y²,
A =
A
||
A =
A =
=
||
II
Transcribed Image Text:For each of the following quadratic forms, write down the symmetric coefficient matrix A such that Q = vAv¹ and V = [X₁ X₂ Xn]. (a) Q (x, y, z) = -x² + 5 xy + 2y² + 2xz+3yz-3 z², (b) Q (x, y) = 2 x² + 4 xy + 4y², (c) Q (x, y, z) = -5x² + 5xy-3y² + 5xz+yz +4z², (d) Q (w, x, y, z) = −w² + 2 x² + 2 wy+xy − 5 y² − 5 w z - 4 xz - 5 y z + 3 z², (e) Q (x, y) = -2x² + 5xy-4y², A = A || A = A = = || II
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,