For each of the following integrals, indicate whether integration by substitution or integratio 1. fx sin x da OA. substitution B. neither OC. integration by parts 2. f 1 da 1+z³ A. integration by parts B. substitution OC. neither 3. f x²e²³ dx O A. neither B. substitution OC. integration by parts 4. f x² cos(x³) dx O A. neither B. integration by parts OC. substitution 5. √ √2+1 da f dx OA. integration by parts OB. substitution OC. neither

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Question
### Integration Method Selection

For each of the following integrals, determine whether integration by substitution or integration by parts is more appropriate, or if neither method is appropriate. Do not evaluate the integrals.

1. **Integral:** \(\int x \sin x \, dx\)
   - **Options:**
     - A. substitution
     - B. neither
     - C. integration by parts

2. **Integral:** \(\int \frac{x^2}{1+x^3} \, dx\)
   - **Options:**
     - A. integration by parts
     - B. substitution
     - C. neither

3. **Integral:** \(\int x^2 e^{x^3} \, dx\)
   - **Options:**
     - A. neither
     - B. substitution
     - C. integration by parts

4. **Integral:** \(\int x^2 \cos(x^3) \, dx\)
   - **Options:**
     - A. neither
     - B. integration by parts
     - C. substitution

5. **Integral:** \(\int \frac{1}{\sqrt{5x+1}} \, dx\)
   - **Options:**
     - A. integration by parts
     - B. substitution
     - C. neither

*Note:* For each option chosen, consider the most straightforward method that simplifies the integral expression.
Transcribed Image Text:### Integration Method Selection For each of the following integrals, determine whether integration by substitution or integration by parts is more appropriate, or if neither method is appropriate. Do not evaluate the integrals. 1. **Integral:** \(\int x \sin x \, dx\) - **Options:** - A. substitution - B. neither - C. integration by parts 2. **Integral:** \(\int \frac{x^2}{1+x^3} \, dx\) - **Options:** - A. integration by parts - B. substitution - C. neither 3. **Integral:** \(\int x^2 e^{x^3} \, dx\) - **Options:** - A. neither - B. substitution - C. integration by parts 4. **Integral:** \(\int x^2 \cos(x^3) \, dx\) - **Options:** - A. neither - B. integration by parts - C. substitution 5. **Integral:** \(\int \frac{1}{\sqrt{5x+1}} \, dx\) - **Options:** - A. integration by parts - B. substitution - C. neither *Note:* For each option chosen, consider the most straightforward method that simplifies the integral expression.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning