For each of the following decide whether the vector field could be a gradient vector field. Be sure that you can justify your answer. (a) F(x, y, z) = (4z, 0, 4x) F(x, y, z) is ?

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
For each of the following decide whether the vector field could be a gradient vector field.
Be sure that you can justify your answer.
(a) F(x, y, z) = (4z, 0, 4x)
F(x, y, z) is ?
5y
5z
x²+x²
(b) F(x, y, z) = √√5²²² +²+√
F(x, y, z) is ?
(c) F(x, y, z) =x√√√2x² + y² + z² i + y√√/2x² + y² + z²j+z√√√2x² + y² + z² k
F(x, y, z) is ?
(d) F(x, y, z) =
F(x, y, z) is ?
X
√x²+y²+z²
5x
Y
x²+y²+z²
-j +
Z
√x²+y²+z²
k+
Transcribed Image Text:For each of the following decide whether the vector field could be a gradient vector field. Be sure that you can justify your answer. (a) F(x, y, z) = (4z, 0, 4x) F(x, y, z) is ? 5y 5z x²+x² (b) F(x, y, z) = √√5²²² +²+√ F(x, y, z) is ? (c) F(x, y, z) =x√√√2x² + y² + z² i + y√√/2x² + y² + z²j+z√√√2x² + y² + z² k F(x, y, z) is ? (d) F(x, y, z) = F(x, y, z) is ? X √x²+y²+z² 5x Y x²+y²+z² -j + Z √x²+y²+z² k+
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning