For each graph of f shown below, answer parts (a)-(d). -3 domain range -2 -1 y 15 10 5 1 f(x) = x¹ (a) Find the domain and range of f. (Enter your answer using interval notation.) O 2 3 Et X (b) Find the x- and y-intercepts of the graph of f. (If an answer does not exist, enter DNE.) x-intercept (x, y) = y-intercept (x, y) = ( (c) Determine the open intervals on which f is increasing, decreasing, or constant. (Enter your answers using inter enter DNE.) Type here to search

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
2.4 14
### Analyzing Function Behavior and Symmetry

#### Questions:

**(c) Determine the open intervals on which \( f \) is increasing, decreasing, or constant.** 
*(Enter your answers using interval notation. If an answer does not exist, enter DNE.)*

- **Increasing**: 
  - [Input interval here]
  
- **Decreasing**: 
  - [Input interval here]
  
- **Constant**: 
  - [Input interval here]

**(d) Determine whether \( f \) is even, odd, or neither.**

- \( \bigcirc \) even
- \( \bigcirc \) \[X\] odd
- \( \bigcirc \) neither

**Describe the symmetry:**

\[ \boxed{\text{x}} \] x-axis symmetry

\[ \boxed{} \] y-axis symmetry

\[ \boxed{} \] origin symmetry

\[ \boxed{} \] symmetry over the line \( y = x \)

\[ \boxed{} \] no symmetry

#### Explanation of Concepts:

**1. Determining Intervals:**
- **Increasing Interval:** A function \( f(x) \) is increasing on an interval if, for every \( x_1 \) and \( x_2 \) in the interval, \( x_1 < x_2 \) implies \( f(x_1) < f(x_2) \).
- **Decreasing Interval:** A function \( f(x) \) is decreasing on an interval if, for every \( x_1 \) and \( x_2 \) in the interval, \( x_1 < x_2 \) implies \( f(x_1) > f(x_2) \).
- **Constant Interval:** A function \( f(x) \) is constant on an interval if, for every \( x_1 \) and \( x_2 \) in the interval, \( f(x_1) = f(x_2) \).

**2. Function Symmetry:**
- **Even Function:** A function \( f(x) \) is even if \( f(x) = f(-x) \) for all \( x \) in the domain. It is symmetric about the y-axis.
- **Odd Function:** A function \( f(x) \) is odd if \( -f(x) = f(-x) \) for all \( x \) in the domain.
Transcribed Image Text:### Analyzing Function Behavior and Symmetry #### Questions: **(c) Determine the open intervals on which \( f \) is increasing, decreasing, or constant.** *(Enter your answers using interval notation. If an answer does not exist, enter DNE.)* - **Increasing**: - [Input interval here] - **Decreasing**: - [Input interval here] - **Constant**: - [Input interval here] **(d) Determine whether \( f \) is even, odd, or neither.** - \( \bigcirc \) even - \( \bigcirc \) \[X\] odd - \( \bigcirc \) neither **Describe the symmetry:** \[ \boxed{\text{x}} \] x-axis symmetry \[ \boxed{} \] y-axis symmetry \[ \boxed{} \] origin symmetry \[ \boxed{} \] symmetry over the line \( y = x \) \[ \boxed{} \] no symmetry #### Explanation of Concepts: **1. Determining Intervals:** - **Increasing Interval:** A function \( f(x) \) is increasing on an interval if, for every \( x_1 \) and \( x_2 \) in the interval, \( x_1 < x_2 \) implies \( f(x_1) < f(x_2) \). - **Decreasing Interval:** A function \( f(x) \) is decreasing on an interval if, for every \( x_1 \) and \( x_2 \) in the interval, \( x_1 < x_2 \) implies \( f(x_1) > f(x_2) \). - **Constant Interval:** A function \( f(x) \) is constant on an interval if, for every \( x_1 \) and \( x_2 \) in the interval, \( f(x_1) = f(x_2) \). **2. Function Symmetry:** - **Even Function:** A function \( f(x) \) is even if \( f(x) = f(-x) \) for all \( x \) in the domain. It is symmetric about the y-axis. - **Odd Function:** A function \( f(x) \) is odd if \( -f(x) = f(-x) \) for all \( x \) in the domain.
**For each graph of function \( f \) shown below, answer parts (a)-(d).**

**Graph Description:**
- The graph represents the function \( f(x) = x^4 \).
- The \( x \)-axis ranges from \(-3\) to \(3\).
- The \( y \)-axis ranges from \(-5\) to \(20\).
- The graph is symmetric with respect to the \( y \)-axis and features a paraboloid shape opening upwards, with the vertex at the origin \((0,0)\).
- Specific points marked along the \( y \)-axis include \(5\), \(10\), and \(15\).

**Question (a): Find the domain and range of \( f \). (Enter your answer using interval notation.)**
- **Domain:** \([ \, \_\_\_\_ , \_\_\_\_ \, ]\)
- **Range:** \([ \, \_\_\_\_ , \_\_\_\_ \, ]\)

**Question (b): Find the \( x \)- and \( y \)-intercepts of the graph of \( f \). (If an answer does not exist, enter DNE.)**
- **\( x \)-intercept:** \((x, y) = (\_\_\_\_, \_\_\_\_) \)
- **\( y \)-intercept:** \((x, y) = (\_\_\_\_, \_\_\_\_) \)

**Question (c): Determine the open intervals on which \( f \) is increasing, decreasing, or constant. (Enter your answers using interval notation. If an answer does not exist, enter DNE.)**
- **Increasing:** \(\_\_\_\_\)
- **Decreasing:** \(\_\_\_\_\)
- **Constant:** \(\_\_\_\_\)

*(Answers:)*

**(a)**
- **Domain:** \((-\infty, \infty)\)
- **Range:** \([0, \infty)\)

**(b)**
- **\( x \)-intercept:** \((0,0)\)
- **\( y \)-intercept:** \((0,0)\)

**(c)**
- **Increasing:** \((0, \infty)\)
- **Decreasing:** \((-\infty, 0)\)
- **Constant:** DNE
Transcribed Image Text:**For each graph of function \( f \) shown below, answer parts (a)-(d).** **Graph Description:** - The graph represents the function \( f(x) = x^4 \). - The \( x \)-axis ranges from \(-3\) to \(3\). - The \( y \)-axis ranges from \(-5\) to \(20\). - The graph is symmetric with respect to the \( y \)-axis and features a paraboloid shape opening upwards, with the vertex at the origin \((0,0)\). - Specific points marked along the \( y \)-axis include \(5\), \(10\), and \(15\). **Question (a): Find the domain and range of \( f \). (Enter your answer using interval notation.)** - **Domain:** \([ \, \_\_\_\_ , \_\_\_\_ \, ]\) - **Range:** \([ \, \_\_\_\_ , \_\_\_\_ \, ]\) **Question (b): Find the \( x \)- and \( y \)-intercepts of the graph of \( f \). (If an answer does not exist, enter DNE.)** - **\( x \)-intercept:** \((x, y) = (\_\_\_\_, \_\_\_\_) \) - **\( y \)-intercept:** \((x, y) = (\_\_\_\_, \_\_\_\_) \) **Question (c): Determine the open intervals on which \( f \) is increasing, decreasing, or constant. (Enter your answers using interval notation. If an answer does not exist, enter DNE.)** - **Increasing:** \(\_\_\_\_\) - **Decreasing:** \(\_\_\_\_\) - **Constant:** \(\_\_\_\_\) *(Answers:)* **(a)** - **Domain:** \((-\infty, \infty)\) - **Range:** \([0, \infty)\) **(b)** - **\( x \)-intercept:** \((0,0)\) - **\( y \)-intercept:** \((0,0)\) **(c)** - **Increasing:** \((0, \infty)\) - **Decreasing:** \((-\infty, 0)\) - **Constant:** DNE
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,