For Cartesian coordinates (x,y)=(1, -√3), find the angle in the polar coordinates in radians.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Question
**Problem 4: Conversion from Cartesian to Polar Coordinates**

For Cartesian coordinates \((x, y) = (1, -\sqrt{3})\), find the angle in the polar coordinates in radians.

### Explanation:

To convert the given Cartesian coordinates to polar coordinates, use the following steps:

1. **Calculate the radius, \( r \):**
   \[
   r = \sqrt{x^2 + y^2} = \sqrt{1^2 + (-\sqrt{3})^2} = \sqrt{1 + 3} = \sqrt{4} = 2
   \]

2. **Calculate the angle, \( \theta \):**
   \[
   \theta = \tan^{-1}\left(\frac{y}{x}\right) = \tan^{-1}\left(\frac{-\sqrt{3}}{1}\right) = \tan^{-1}(-\sqrt{3})
   \]
   The angle whose tangent is \(-\sqrt{3}\) is \(-\frac{\pi}{3}\), but since the point \((1, -\sqrt{3})\) is in the fourth quadrant, add \(2\pi\) to get the positive angle:
   \[
   \theta = 2\pi - \frac{\pi}{3} = \frac{5\pi}{3}
   \]

Therefore, the angle in polar coordinates is \(\frac{5\pi}{3}\) radians.
Transcribed Image Text:**Problem 4: Conversion from Cartesian to Polar Coordinates** For Cartesian coordinates \((x, y) = (1, -\sqrt{3})\), find the angle in the polar coordinates in radians. ### Explanation: To convert the given Cartesian coordinates to polar coordinates, use the following steps: 1. **Calculate the radius, \( r \):** \[ r = \sqrt{x^2 + y^2} = \sqrt{1^2 + (-\sqrt{3})^2} = \sqrt{1 + 3} = \sqrt{4} = 2 \] 2. **Calculate the angle, \( \theta \):** \[ \theta = \tan^{-1}\left(\frac{y}{x}\right) = \tan^{-1}\left(\frac{-\sqrt{3}}{1}\right) = \tan^{-1}(-\sqrt{3}) \] The angle whose tangent is \(-\sqrt{3}\) is \(-\frac{\pi}{3}\), but since the point \((1, -\sqrt{3})\) is in the fourth quadrant, add \(2\pi\) to get the positive angle: \[ \theta = 2\pi - \frac{\pi}{3} = \frac{5\pi}{3} \] Therefore, the angle in polar coordinates is \(\frac{5\pi}{3}\) radians.
Expert Solution
Step 1

Use the formula for angle in the polar coordinates.

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,