For any integer k greater than or equal to 2, define R(k) as the ratio of k 's largest positive prime divisor to its smallest positive prime divisor. For instance, R(14) = ½, R(15) = 3, R(30) = ½, and R(9) = 3 = 1. Note that R(k) = 1 if k is a prime number or any power of a prime. Additionally, R(1) is defined as 1. Prove or disprove these statements: (a) For every natural number x, there is a natural number y such that the ratio R(y) is at least x. (b) There is a natural number y such that for every natural number x, the ratio R(y) is at least x.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
For any integer k greater than or equal to 2, define R(k) as the ratio of k 's largest
positive prime divisor to its smallest positive prime divisor. For instance, R(14) = ½,
R(15) = 3, R(30) = ½, and R(9) = 3 = 1. Note that R(k) = 1 if k is a prime number or
any power of a prime. Additionally, R(1) is defined as 1.
Prove or disprove these statements: (a) For every natural number x, there is a natural
number y such that the ratio R(y) is at least x. (b) There is a natural number y such that
for every natural number x, the ratio R(y) is at least x.
Transcribed Image Text:For any integer k greater than or equal to 2, define R(k) as the ratio of k 's largest positive prime divisor to its smallest positive prime divisor. For instance, R(14) = ½, R(15) = 3, R(30) = ½, and R(9) = 3 = 1. Note that R(k) = 1 if k is a prime number or any power of a prime. Additionally, R(1) is defined as 1. Prove or disprove these statements: (a) For every natural number x, there is a natural number y such that the ratio R(y) is at least x. (b) There is a natural number y such that for every natural number x, the ratio R(y) is at least x.
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,