For a linear first-order differential equation dy/dt=F(y,t) , we know that the existence and uniqueness theorem tells us that a solution to an initial value problem exists if F is continuous on some interval (because of the intermediate value theorem), and that the solution is unique if the partial derivative with respect to y of F is also continuous on the same interval. However, partial derivatives measure the change of a function in one direction while the other(s) are held constant, which in this case would mean t is held constant while y varies. But if we are talking about an "interval," how can this be? Wouldn't our t interval be restricted? I'm presuming the reasoning behind the uniqueness part has to do with the fact that coplanar curves are said to be parallel and do not intersect, thus meaning only one of a family of coplanar curves can pass through a given point (our initial point). But I'm having trouble understanding how the partial derivative with respect to y relates to that idea.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

For a linear first-order differential equation dy/dt=F(y,t) , we know that the existence and uniqueness theorem tells us that a solution to an initial value problem exists if F is continuous on some interval (because of the intermediate value theorem), and that the solution is unique if the partial derivative with respect to y of F is also continuous on the same interval. However, partial derivatives measure the change of a function in one direction while the other(s) are held constant, which in this case would mean t is held constant while y varies. But if we are talking about an "interval," how can this be? Wouldn't our t interval be restricted? I'm presuming the reasoning behind the uniqueness part has to do with the fact that coplanar curves are said to be parallel and do not intersect, thus meaning only one of a family of coplanar curves can pass through a given point (our initial point). But I'm having trouble understanding how the partial derivative with respect to y relates to that idea. 

Expert Solution
Step 1: Conceptual Introduction

For a linear first-order ordinary differential equation (ODE) of the form:

dydt=F(y,t)

where y is a function of t, the existence and uniqueness theorem makes certain guarantees about the solution to this ODE given a particular initial condition. 

Specifically:

  • Existence: A solution y(t) to the initial value problem exists if F(y,t) is continuous in both y and t in some neighborhood of the initial condition.

  • Uniqueness: The solution y(t) is unique if, in addition to F being continuous, the partial derivative of F with respect to y, denoted Fy, is also continuous in a neighborhood of the initial condition.


Math input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorMath input errorError converting from MathML to accessible text.

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,