For , √3 tan $=1/153 T3 @= tan F6 xl P: IT 2 ^¹ (73) FAISzer 2²=3y² 2=√By Z= 7:mx ====√ √ 2 Y tan (3 G

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Please explain the part circles in pink and also explain how you know that you should do this part circled in pink.

√3
4. Integral Calculus of Multivariable Functions
4. Let E be the ice cream cone solid,
convert to spherercal
bounded above by x² + y² + (2-1)² = 1 and bounded below by the cone z2 = 3(x² + y²).
Find the volume of E.
2²=3(x² + y²)
(2-1)(2-1)
x² + y ² +(²-1) ² = 1
For 4,
x² + y² + z ²2²-22+1=1
p²-2pros4=0
P= 2 cos &
√3
Z
tan $=1/1535
= tan
an" (T3)
P= I
b
✓ x² + y² + (2-1)² = 1
p=21us &
y
2= √√3y
tan =
FXIS zero
2²=3y²
2= √3y
7:mx
LIT
I
6
2005
√ √ So p²sing apdødo
O
Jan (G)
tar
1-2
> Y
√3
(2-1)(2-1)
2²-2211
x²
te 4.7: Spherical Coordinates
ry² + 2²--22+1
2103&
Jo Jo S p²sin & dp d øde
0
p²-
- 2 pous = 0
P(P-2 cos): 0
p=0 and p2105p
Transcribed Image Text:√3 4. Integral Calculus of Multivariable Functions 4. Let E be the ice cream cone solid, convert to spherercal bounded above by x² + y² + (2-1)² = 1 and bounded below by the cone z2 = 3(x² + y²). Find the volume of E. 2²=3(x² + y²) (2-1)(2-1) x² + y ² +(²-1) ² = 1 For 4, x² + y² + z ²2²-22+1=1 p²-2pros4=0 P= 2 cos & √3 Z tan $=1/1535 = tan an" (T3) P= I b ✓ x² + y² + (2-1)² = 1 p=21us & y 2= √√3y tan = FXIS zero 2²=3y² 2= √3y 7:mx LIT I 6 2005 √ √ So p²sing apdødo O Jan (G) tar 1-2 > Y √3 (2-1)(2-1) 2²-2211 x² te 4.7: Spherical Coordinates ry² + 2²--22+1 2103& Jo Jo S p²sin & dp d øde 0 p²- - 2 pous = 0 P(P-2 cos): 0 p=0 and p2105p
Expert Solution
steps

Step by step

Solved in 4 steps with 16 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,