f(n) = n³, g(n) = 6n + 1 е.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Can I get help on part e?

**Part 3: Big-Oh? K.**

**Suggested reading:** Sections 2.1 and 2.2 of *Algorithm Design*.

Below are four pairs of functions, labeled \( f \) and \( g \). For each, determine constants \( a \) and \( n_0 \) such that for all \( n \geq n_0 \), \( a \cdot f(n) \geq g(n) \). Give a clear argument as to why your choice of \( n_0 \) and \( a \) satisfy the conditions.

**a.** \( f(n) = 2n + 3 \), \( g(n) = 5n \)

**b.** \( f(n) = 2n + 3 \), \( g(n) = 5n + \log(n) \)

**c.** \( f(n) = n^{1/4} \), \( g(n) = \log(n) \)

**d.** \( f(n) = n \), \( g(n) = (\log_2 n)^4 \)

**e.** \( f(n) = n^3 \), \( g(n) = 6n + 1 \)

*Hint: you may assume that for all \( x > 0 \), \( \log(x) < x \).*
Transcribed Image Text:**Part 3: Big-Oh? K.** **Suggested reading:** Sections 2.1 and 2.2 of *Algorithm Design*. Below are four pairs of functions, labeled \( f \) and \( g \). For each, determine constants \( a \) and \( n_0 \) such that for all \( n \geq n_0 \), \( a \cdot f(n) \geq g(n) \). Give a clear argument as to why your choice of \( n_0 \) and \( a \) satisfy the conditions. **a.** \( f(n) = 2n + 3 \), \( g(n) = 5n \) **b.** \( f(n) = 2n + 3 \), \( g(n) = 5n + \log(n) \) **c.** \( f(n) = n^{1/4} \), \( g(n) = \log(n) \) **d.** \( f(n) = n \), \( g(n) = (\log_2 n)^4 \) **e.** \( f(n) = n^3 \), \( g(n) = 6n + 1 \) *Hint: you may assume that for all \( x > 0 \), \( \log(x) < x \).*
Expert Solution
Step 1: Given.

Given: e) f(n)=n3 and g(n)=6n+1

To find: a and n0 such that a·f(n)g(n)

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,