First, use the substitution y₁(x) = e-5x. Y₂(x) = u(x)y₁(x) u(x)e-5x = Then, use the product rule to find the first and second derivatives of y2. Y₂' = - 5ue-5x + u'e-5x Y2" = (-5u'e-5x + + = u'e-5x - 10u'e-5x + Jue-5x) + (u'e-5x -5u'e-5x ) Jue-5x

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
First, use the substitution \( y_1(x) = e^{-5x} \).

\[
y_2(x) = u(x)y_1(x) = u(x)e^{-5x}
\]

Then, use the product rule to find the first and second derivatives of \( y_2 \).

\[
y_2' = -5ue^{-5x} + u'e^{-5x}
\]

\[
y_2'' = \left(-5u'e^{-5x} + \underline{\hspace{1cm}}\right)ue^{-5x} + (u''e^{-5x} - 5u'e^{-5x})
\]

\[
= u''e^{-5x} - 10u'e^{-5x} + \left(\underline{\hspace{1cm}}\right)ue^{-5x}
\]
Transcribed Image Text:First, use the substitution \( y_1(x) = e^{-5x} \). \[ y_2(x) = u(x)y_1(x) = u(x)e^{-5x} \] Then, use the product rule to find the first and second derivatives of \( y_2 \). \[ y_2' = -5ue^{-5x} + u'e^{-5x} \] \[ y_2'' = \left(-5u'e^{-5x} + \underline{\hspace{1cm}}\right)ue^{-5x} + (u''e^{-5x} - 5u'e^{-5x}) \] \[ = u''e^{-5x} - 10u'e^{-5x} + \left(\underline{\hspace{1cm}}\right)ue^{-5x} \]
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,