First Derivative f(x,) – f(x,-1) 2h Error f'(x) = -f(x,) + 8ƒ(x,.) – 8ƒ(x}-1) + ƒ(x_-2) 12h f(x) = O(h") Second Derivative f(x)- 2f(x) +f(x}-1) f"(x) = O(4) -f(x2) + 16f(x) - 30f(x) + 16f (x-1) – f(x_-2) 12A f"(x) = O(h") Third Derivative f(x,) – 2f(x,.) + 2ƒ(x_}) – f(x,-2) f" (x) = O(h) 2h -f(x,,) + 8ƒ(x,»2) – 13f(x,) + 13ƒ(x,-1) – 8ƒ(x__2) + ƒ(x,--) f"(x,) = 8h Fourth Derivative f(X2) – 4f(x,»1) + 6ƒ(x) – 4f(x,-1) + f(x\.2) f"(x) = ht O(h*) fm)=f(x;,3) +12f(x,,2)– 39f (x,.1)+56ƒ (x,)– 39 f (x-1)+12f(x_2)-ƒ (x-3) 6h* In the above table, the formulations to calculate different order derivatives of a function are given by using the central difference method. Eor the function f (x) = In (x), obtain the first, second, third and fourth. order derivatives of this function by using the above methods for the neighborhood step h = 0.01 at the point x = 4.0. Soru çözüm formatı oluşturması adına birinci türevin elde edilme yöntemi aşağıda verilmiştir f(x) = In (x) ƒ (4.0) = ? f"(4.0)=? f"(4.0)=? f "(4.0) = ? h = 0.01 için x, = 4.00 x, = 4.01 x1 = 3.99 x = 4.02 x = 3.98 İki nokta için birinci türev f(4.01)- f (3.99) 1.3888 –1.3838 =0.25 S'(4.0) = 2(0.01) 0.02 Dört nokta için birinci türev L'(4.0) -/(4.02)+8ƒ(4.01) – 8ƒ (3.99)+ S(3.98) _ (-1.3913)+8(1.3888)– 8(1.3838)+1.3813 = 0.25 12 (0.01) 12(0.01) Analitik çözüm f(x) = In (x) → f(x) =1/x → f'(4.0)= 0.25 Using the solution format given above, obtain the second, third and fourth order derivatives of the function f (x) = In (x). Compare the results you get with the numerical solution with the derivatives you get with the analytical solution for the relevant function.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
First Derivative
Error
f(x)-f(x-1)
f'(x) =
O(h?)
2h
-f(x,2) + 8f (x,-1) – 8ƒ(x,-1) + f(x,-2)
12h
f'(x) =
O(h")
Second Derivative
f(x)- 2f(x) +f(x-)
f"(x) =
O(h)
h?
-f (x2) + 16f(x)-30f(x) + 16f (x)-1) – f(x)-2)
12½²
f"(x) =
Third Derivative
f(x,2) – 2f(x,) + 2f(x,1) – f (x,-2)
2h
f" (x) =
O(h)
-f(x,s) + 8ƒ(x;+2) – 13ƒ(x,+1) + 13ƒ(x,-1) – 8ƒ (x,--2) + f (x)--)
f"(x,) =
O(h")
8h
Fourth Derivative
f(x2)-4f(x) +6f(x) – 4f(x;-1) + f(x}-2)
f"' (x) =
O(h")
(mr)=f(xs)+12f (x;u2)– 39f (*1)+ 56ƒ (x, )– 39 f(x-1) +12f (x,-_2)– f (*-3)
6h*
In the above table, the formulations to calculate different order derivatives of a function are given by using the central
difference method.
For the function f (x) = In (x), obtain the first, second, third and fourth order derivatives of this function by using the above
methods for the neighborhood step h = 0.01 at the point x = 4.0.
Soru çözüm formatı oluşturması adına birinci türevin elde edilme yöntemi aşağıda verilmiştir
f(x) = In (x) ƒ(4.0) = ? ƒ "(4.0)=? f"(4.0) = ? f "(4.0) = ?
h = 0.01 için x, = 4.00 x = 4.01 x,-1 = 3.99 x,2 = 4.02 x-2 = 3.98
İki nokta için birinci türev
f (4.01)– ƒ (3.99) 1.3888–1.3838
2(0.01)
S'(4.0) =
= 0,25
0.02
Dört nokta için birinci türev
-(4.02)+ 8f (4.01) – 8f (3.99)+ f(3.98) _ (-1.3913)+8(1.3888)– 8(1.3838)+1.3813
S'(4.0) =
= 0.25
12 (0.01)
12(0.01)
Analitik çözüm
f(x) = In (x)
f (x) = 1 / x → f '(4.0) = 0.25
Using the solution format given above, obtain the second, third and fourth order derivatives of the
function f (x) = In (x). Compare the results you get with the numerical solution with the derivatives
you get with the analytical solution for the relevant function.
Transcribed Image Text:First Derivative Error f(x)-f(x-1) f'(x) = O(h?) 2h -f(x,2) + 8f (x,-1) – 8ƒ(x,-1) + f(x,-2) 12h f'(x) = O(h") Second Derivative f(x)- 2f(x) +f(x-) f"(x) = O(h) h? -f (x2) + 16f(x)-30f(x) + 16f (x)-1) – f(x)-2) 12½² f"(x) = Third Derivative f(x,2) – 2f(x,) + 2f(x,1) – f (x,-2) 2h f" (x) = O(h) -f(x,s) + 8ƒ(x;+2) – 13ƒ(x,+1) + 13ƒ(x,-1) – 8ƒ (x,--2) + f (x)--) f"(x,) = O(h") 8h Fourth Derivative f(x2)-4f(x) +6f(x) – 4f(x;-1) + f(x}-2) f"' (x) = O(h") (mr)=f(xs)+12f (x;u2)– 39f (*1)+ 56ƒ (x, )– 39 f(x-1) +12f (x,-_2)– f (*-3) 6h* In the above table, the formulations to calculate different order derivatives of a function are given by using the central difference method. For the function f (x) = In (x), obtain the first, second, third and fourth order derivatives of this function by using the above methods for the neighborhood step h = 0.01 at the point x = 4.0. Soru çözüm formatı oluşturması adına birinci türevin elde edilme yöntemi aşağıda verilmiştir f(x) = In (x) ƒ(4.0) = ? ƒ "(4.0)=? f"(4.0) = ? f "(4.0) = ? h = 0.01 için x, = 4.00 x = 4.01 x,-1 = 3.99 x,2 = 4.02 x-2 = 3.98 İki nokta için birinci türev f (4.01)– ƒ (3.99) 1.3888–1.3838 2(0.01) S'(4.0) = = 0,25 0.02 Dört nokta için birinci türev -(4.02)+ 8f (4.01) – 8f (3.99)+ f(3.98) _ (-1.3913)+8(1.3888)– 8(1.3838)+1.3813 S'(4.0) = = 0.25 12 (0.01) 12(0.01) Analitik çözüm f(x) = In (x) f (x) = 1 / x → f '(4.0) = 0.25 Using the solution format given above, obtain the second, third and fourth order derivatives of the function f (x) = In (x). Compare the results you get with the numerical solution with the derivatives you get with the analytical solution for the relevant function.
Expert Solution
steps

Step by step

Solved in 2 steps with 9 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,