First Derivative f(x,) – f(x,-1) 2h Error f'(x) = -f(x,) + 8ƒ(x,.) – 8ƒ(x}-1) + ƒ(x_-2) 12h f(x) = O(h") Second Derivative f(x)- 2f(x) +f(x}-1) f"(x) = O(4) -f(x2) + 16f(x) - 30f(x) + 16f (x-1) – f(x_-2) 12A f"(x) = O(h") Third Derivative f(x,) – 2f(x,.) + 2ƒ(x_}) – f(x,-2) f" (x) = O(h) 2h -f(x,,) + 8ƒ(x,»2) – 13f(x,) + 13ƒ(x,-1) – 8ƒ(x__2) + ƒ(x,--) f"(x,) = 8h Fourth Derivative f(X2) – 4f(x,»1) + 6ƒ(x) – 4f(x,-1) + f(x\.2) f"(x) = ht O(h*) fm)=f(x;,3) +12f(x,,2)– 39f (x,.1)+56ƒ (x,)– 39 f (x-1)+12f(x_2)-ƒ (x-3) 6h* In the above table, the formulations to calculate different order derivatives of a function are given by using the central difference method. Eor the function f (x) = In (x), obtain the first, second, third and fourth. order derivatives of this function by using the above methods for the neighborhood step h = 0.01 at the point x = 4.0. Soru çözüm formatı oluşturması adına birinci türevin elde edilme yöntemi aşağıda verilmiştir f(x) = In (x) ƒ (4.0) = ? f"(4.0)=? f"(4.0)=? f "(4.0) = ? h = 0.01 için x, = 4.00 x, = 4.01 x1 = 3.99 x = 4.02 x = 3.98 İki nokta için birinci türev f(4.01)- f (3.99) 1.3888 –1.3838 =0.25 S'(4.0) = 2(0.01) 0.02 Dört nokta için birinci türev L'(4.0) -/(4.02)+8ƒ(4.01) – 8ƒ (3.99)+ S(3.98) _ (-1.3913)+8(1.3888)– 8(1.3838)+1.3813 = 0.25 12 (0.01) 12(0.01) Analitik çözüm f(x) = In (x) → f(x) =1/x → f'(4.0)= 0.25 Using the solution format given above, obtain the second, third and fourth order derivatives of the function f (x) = In (x). Compare the results you get with the numerical solution with the derivatives you get with the analytical solution for the relevant function.
First Derivative f(x,) – f(x,-1) 2h Error f'(x) = -f(x,) + 8ƒ(x,.) – 8ƒ(x}-1) + ƒ(x_-2) 12h f(x) = O(h") Second Derivative f(x)- 2f(x) +f(x}-1) f"(x) = O(4) -f(x2) + 16f(x) - 30f(x) + 16f (x-1) – f(x_-2) 12A f"(x) = O(h") Third Derivative f(x,) – 2f(x,.) + 2ƒ(x_}) – f(x,-2) f" (x) = O(h) 2h -f(x,,) + 8ƒ(x,»2) – 13f(x,) + 13ƒ(x,-1) – 8ƒ(x__2) + ƒ(x,--) f"(x,) = 8h Fourth Derivative f(X2) – 4f(x,»1) + 6ƒ(x) – 4f(x,-1) + f(x\.2) f"(x) = ht O(h*) fm)=f(x;,3) +12f(x,,2)– 39f (x,.1)+56ƒ (x,)– 39 f (x-1)+12f(x_2)-ƒ (x-3) 6h* In the above table, the formulations to calculate different order derivatives of a function are given by using the central difference method. Eor the function f (x) = In (x), obtain the first, second, third and fourth. order derivatives of this function by using the above methods for the neighborhood step h = 0.01 at the point x = 4.0. Soru çözüm formatı oluşturması adına birinci türevin elde edilme yöntemi aşağıda verilmiştir f(x) = In (x) ƒ (4.0) = ? f"(4.0)=? f"(4.0)=? f "(4.0) = ? h = 0.01 için x, = 4.00 x, = 4.01 x1 = 3.99 x = 4.02 x = 3.98 İki nokta için birinci türev f(4.01)- f (3.99) 1.3888 –1.3838 =0.25 S'(4.0) = 2(0.01) 0.02 Dört nokta için birinci türev L'(4.0) -/(4.02)+8ƒ(4.01) – 8ƒ (3.99)+ S(3.98) _ (-1.3913)+8(1.3888)– 8(1.3838)+1.3813 = 0.25 12 (0.01) 12(0.01) Analitik çözüm f(x) = In (x) → f(x) =1/x → f'(4.0)= 0.25 Using the solution format given above, obtain the second, third and fourth order derivatives of the function f (x) = In (x). Compare the results you get with the numerical solution with the derivatives you get with the analytical solution for the relevant function.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 9 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,