First Derivative Error f'(x) =: 2h -f(x)+8f(x,)-8f(x,-) + f(x,-2) 12h f'(x) = Second Derivative f(x)- 2f(x) + f(x,) f"(x) = O(h) f) + 16f(z,) - 30f(x) + 16f(x,1) - {(x, ) 12A fx) = Third Derivative f(4,,) – 2f(x) + 2f(x)-f(x_ ) (x) = -f(x,,) + 8ƒ(x,,2) – 13f(x,,) + 13ƒ(x,.) – 8ƒ(x_2) + f() f"(x,) = 8A Fourth Derivative f(x)-4f(x) +6f(x) – 4f(x,-)+ f(x,_2) "(x) = Ea-) + 12f(x,;) + 39f(x,.) + 56f(x) – 39f(x,-) + 12ƒ(x,_,) + f(K,) In the above table, the formulations to calculate different order derivatives of a function are given by using the central difference method. For the function f (x) = In (x), obtain the first, second, third and fourth order derivatives of this function by using the above methods for the neighborhood step h = 0.01 at the point x = 4.0. Soru çözüm formatı oluşturması adına birinci türevin elde edilme yöntemi aşağıda verilmiştir f(x) = In (x) ƒ(4.0) = ? f "(4.0) =? f"(4.0)= ? ƒ "(4.0) = ? h= 0.01 için x, = 4.00 x = 4.01 x = 3.99 x2 = 4.02 x-2 = 3.98 İki nokta için birinci türev S'(4.0) = f (4.01)-f (3.99) 1.3888 –1.3838 = 0.25 2(0.01) 0.02 Dört nokta için birinci türev -f(4.02)+8f(4.01) – 8f (3.99)+ f(3.98) (-1.3913)+8(1.3888) – 8(1.3838)+1.3813 S'(4.0) = =0.25 12(0.01) 12(0.01) Analitik çözüm f(x) = In (x) → f(x)=1/x → f'(4.0)= 0.25 Using the solution format given above, obtain the second, third and fourth order derivatives of the function f (x) = In (x). Compare the results you get with the numerical solution with the derivatives you get with the analytical solution for the relevant function.
First Derivative Error f'(x) =: 2h -f(x)+8f(x,)-8f(x,-) + f(x,-2) 12h f'(x) = Second Derivative f(x)- 2f(x) + f(x,) f"(x) = O(h) f) + 16f(z,) - 30f(x) + 16f(x,1) - {(x, ) 12A fx) = Third Derivative f(4,,) – 2f(x) + 2f(x)-f(x_ ) (x) = -f(x,,) + 8ƒ(x,,2) – 13f(x,,) + 13ƒ(x,.) – 8ƒ(x_2) + f() f"(x,) = 8A Fourth Derivative f(x)-4f(x) +6f(x) – 4f(x,-)+ f(x,_2) "(x) = Ea-) + 12f(x,;) + 39f(x,.) + 56f(x) – 39f(x,-) + 12ƒ(x,_,) + f(K,) In the above table, the formulations to calculate different order derivatives of a function are given by using the central difference method. For the function f (x) = In (x), obtain the first, second, third and fourth order derivatives of this function by using the above methods for the neighborhood step h = 0.01 at the point x = 4.0. Soru çözüm formatı oluşturması adına birinci türevin elde edilme yöntemi aşağıda verilmiştir f(x) = In (x) ƒ(4.0) = ? f "(4.0) =? f"(4.0)= ? ƒ "(4.0) = ? h= 0.01 için x, = 4.00 x = 4.01 x = 3.99 x2 = 4.02 x-2 = 3.98 İki nokta için birinci türev S'(4.0) = f (4.01)-f (3.99) 1.3888 –1.3838 = 0.25 2(0.01) 0.02 Dört nokta için birinci türev -f(4.02)+8f(4.01) – 8f (3.99)+ f(3.98) (-1.3913)+8(1.3888) – 8(1.3838)+1.3813 S'(4.0) = =0.25 12(0.01) 12(0.01) Analitik çözüm f(x) = In (x) → f(x)=1/x → f'(4.0)= 0.25 Using the solution format given above, obtain the second, third and fourth order derivatives of the function f (x) = In (x). Compare the results you get with the numerical solution with the derivatives you get with the analytical solution for the relevant function.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Topic Video
Question

Transcribed Image Text:First Derivative
Error
f'(x) =
O(h)
2h
-f(x)+8f(x)-8f(x-)+f(x, 2)
f(x) =
O(h)
12h
Second Derivative
f(x)-2f(x) +f(x-)
f"(x) =
O(h)
-f(x)+ 16f(x,)-30f(x) + 16f(x,-1) – f(x,-2)
12A
f"(x) =-
Third Derivative
f(x) - 2f(x) +2f(x_,) – f(x,_2)
f"(x) =
O(h)
2h
-f(x,) +8f(x,2) - 13f(x,)+ 13f(x,)- 8f(x ) + f()
8A
f"(x) =
Fourth Derivative
f(x)- 4f(x,)+6f(x)- 4f(x)+ f(x-)
"(x) =
-f) + 12f(x,) + 39f(x,,) + 56ƒ(x) – 39f(x_.,) + 12fK-) + fx)
f"(x) =
In the above table, the formulations to calculate different order derivatives of a function are given by using the
çentral difference method.
For the function f (x) = In (x), obtain the first, second, third and fourth order derivatives of this function by using
the above methods for the neighborhood step h = 0.01 at the point x = 4.0.
Soru çözüm formatı oluşturması adına birinci türevin elde edilme yöntemi aşağıda verilmiştir
f (x) = In (x) f(4.0) = ? f "(4.0) = ? f"(4.0)= ? f ""(4.0) = ?
h = 0.01 için x, = 4.00 x- = 4.01 x-1 = 3.99 x,-2 = 4.02 x-2 = 3.98
İki nokta için birinci türev
f (4.01)-f (3.99) 1.3888 –1.3838
2(0.01)
f'(4.0) =
= 0.25
0.02
Dört nokta için birinci türev
-f (4.02)+ 8f(4.01) – 8ƒ (3.99)+ f (3.98) (-1.3913)+8(1.3888) – 8(1.3838)+1.3813
f'(4.0) =
= 0.25
12 (0.01)
12(0.01)
Analitik çözüm
f (x) = In (x) → ƒ(x)=1/x → f'(4.0)= 0.25
Using the solution format given above, obtain the second, third and fourth order derivatives of the
function f (x) = In (x). Compare the results you get with the numerical solution with the derivatives
you get with the analytical solution for the relevant function.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 4 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

