First Derivative Error f'(x) =: 2h -f(x)+8f(x,)-8f(x,-) + f(x,-2) 12h f'(x) = Second Derivative f(x)- 2f(x) + f(x,) f"(x) = O(h) f) + 16f(z,) - 30f(x) + 16f(x,1) - {(x, ) 12A fx) = Third Derivative f(4,,) – 2f(x) + 2f(x)-f(x_ ) (x) = -f(x,,) + 8ƒ(x,,2) – 13f(x,,) + 13ƒ(x,.) – 8ƒ(x_2) + f() f"(x,) = 8A Fourth Derivative f(x)-4f(x) +6f(x) – 4f(x,-)+ f(x,_2) "(x) = Ea-) + 12f(x,;) + 39f(x,.) + 56f(x) – 39f(x,-) + 12ƒ(x,_,) + f(K,) In the above table, the formulations to calculate different order derivatives of a function are given by using the central difference method. For the function f (x) = In (x), obtain the first, second, third and fourth order derivatives of this function by using the above methods for the neighborhood step h = 0.01 at the point x = 4.0. Soru çözüm formatı oluşturması adına birinci türevin elde edilme yöntemi aşağıda verilmiştir f(x) = In (x) ƒ(4.0) = ? f "(4.0) =? f"(4.0)= ? ƒ "(4.0) = ? h= 0.01 için x, = 4.00 x = 4.01 x = 3.99 x2 = 4.02 x-2 = 3.98 İki nokta için birinci türev S'(4.0) = f (4.01)-f (3.99) 1.3888 –1.3838 = 0.25 2(0.01) 0.02 Dört nokta için birinci türev -f(4.02)+8f(4.01) – 8f (3.99)+ f(3.98) (-1.3913)+8(1.3888) – 8(1.3838)+1.3813 S'(4.0) = =0.25 12(0.01) 12(0.01) Analitik çözüm f(x) = In (x) → f(x)=1/x → f'(4.0)= 0.25 Using the solution format given above, obtain the second, third and fourth order derivatives of the function f (x) = In (x). Compare the results you get with the numerical solution with the derivatives you get with the analytical solution for the relevant function.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Topic Video
Question
First Derivative
Error
f'(x) =
O(h)
2h
-f(x)+8f(x)-8f(x-)+f(x, 2)
f(x) =
O(h)
12h
Second Derivative
f(x)-2f(x) +f(x-)
f"(x) =
O(h)
-f(x)+ 16f(x,)-30f(x) + 16f(x,-1) – f(x,-2)
12A
f"(x) =-
Third Derivative
f(x) - 2f(x) +2f(x_,) – f(x,_2)
f"(x) =
O(h)
2h
-f(x,) +8f(x,2) - 13f(x,)+ 13f(x,)- 8f(x ) + f()
8A
f"(x) =
Fourth Derivative
f(x)- 4f(x,)+6f(x)- 4f(x)+ f(x-)
"(x) =
-f) + 12f(x,) + 39f(x,,) + 56ƒ(x) – 39f(x_.,) + 12fK-) + fx)
f"(x) =
In the above table, the formulations to calculate different order derivatives of a function are given by using the
çentral difference method.
For the function f (x) = In (x), obtain the first, second, third and fourth order derivatives of this function by using
the above methods for the neighborhood step h = 0.01 at the point x = 4.0.
Soru çözüm formatı oluşturması adına birinci türevin elde edilme yöntemi aşağıda verilmiştir
f (x) = In (x) f(4.0) = ? f "(4.0) = ? f"(4.0)= ? f ""(4.0) = ?
h = 0.01 için x, = 4.00 x- = 4.01 x-1 = 3.99 x,-2 = 4.02 x-2 = 3.98
İki nokta için birinci türev
f (4.01)-f (3.99) 1.3888 –1.3838
2(0.01)
f'(4.0) =
= 0.25
0.02
Dört nokta için birinci türev
-f (4.02)+ 8f(4.01) – 8ƒ (3.99)+ f (3.98) (-1.3913)+8(1.3888) – 8(1.3838)+1.3813
f'(4.0) =
= 0.25
12 (0.01)
12(0.01)
Analitik çözüm
f (x) = In (x) → ƒ(x)=1/x → f'(4.0)= 0.25
Using the solution format given above, obtain the second, third and fourth order derivatives of the
function f (x) = In (x). Compare the results you get with the numerical solution with the derivatives
you get with the analytical solution for the relevant function.
Transcribed Image Text:First Derivative Error f'(x) = O(h) 2h -f(x)+8f(x)-8f(x-)+f(x, 2) f(x) = O(h) 12h Second Derivative f(x)-2f(x) +f(x-) f"(x) = O(h) -f(x)+ 16f(x,)-30f(x) + 16f(x,-1) – f(x,-2) 12A f"(x) =- Third Derivative f(x) - 2f(x) +2f(x_,) – f(x,_2) f"(x) = O(h) 2h -f(x,) +8f(x,2) - 13f(x,)+ 13f(x,)- 8f(x ) + f() 8A f"(x) = Fourth Derivative f(x)- 4f(x,)+6f(x)- 4f(x)+ f(x-) "(x) = -f) + 12f(x,) + 39f(x,,) + 56ƒ(x) – 39f(x_.,) + 12fK-) + fx) f"(x) = In the above table, the formulations to calculate different order derivatives of a function are given by using the çentral difference method. For the function f (x) = In (x), obtain the first, second, third and fourth order derivatives of this function by using the above methods for the neighborhood step h = 0.01 at the point x = 4.0. Soru çözüm formatı oluşturması adına birinci türevin elde edilme yöntemi aşağıda verilmiştir f (x) = In (x) f(4.0) = ? f "(4.0) = ? f"(4.0)= ? f ""(4.0) = ? h = 0.01 için x, = 4.00 x- = 4.01 x-1 = 3.99 x,-2 = 4.02 x-2 = 3.98 İki nokta için birinci türev f (4.01)-f (3.99) 1.3888 –1.3838 2(0.01) f'(4.0) = = 0.25 0.02 Dört nokta için birinci türev -f (4.02)+ 8f(4.01) – 8ƒ (3.99)+ f (3.98) (-1.3913)+8(1.3888) – 8(1.3838)+1.3813 f'(4.0) = = 0.25 12 (0.01) 12(0.01) Analitik çözüm f (x) = In (x) → ƒ(x)=1/x → f'(4.0)= 0.25 Using the solution format given above, obtain the second, third and fourth order derivatives of the function f (x) = In (x). Compare the results you get with the numerical solution with the derivatives you get with the analytical solution for the relevant function.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Knowledge Booster
Chain Rule
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,