First Derivative Error f'(x) =: 2h -f(x)+8f(x,)-8f(x,-) + f(x,-2) 12h f'(x) = Second Derivative f(x)- 2f(x) + f(x,) f"(x) = O(h) f) + 16f(z,) - 30f(x) + 16f(x,1) - {(x, ) 12A fx) = Third Derivative f(4,,) – 2f(x) + 2f(x)-f(x_ ) (x) = -f(x,,) + 8ƒ(x,,2) – 13f(x,,) + 13ƒ(x,.) – 8ƒ(x_2) + f() f"(x,) = 8A Fourth Derivative f(x)-4f(x) +6f(x) – 4f(x,-)+ f(x,_2) "(x) = Ea-) + 12f(x,;) + 39f(x,.) + 56f(x) – 39f(x,-) + 12ƒ(x,_,) + f(K,) In the above table, the formulations to calculate different order derivatives of a function are given by using the central difference method. For the function f (x) = In (x), obtain the first, second, third and fourth order derivatives of this function by using the above methods for the neighborhood step h = 0.01 at the point x = 4.0. Soru çözüm formatı oluşturması adına birinci türevin elde edilme yöntemi aşağıda verilmiştir f(x) = In (x) ƒ(4.0) = ? f "(4.0) =? f"(4.0)= ? ƒ "(4.0) = ? h= 0.01 için x, = 4.00 x = 4.01 x = 3.99 x2 = 4.02 x-2 = 3.98 İki nokta için birinci türev S'(4.0) = f (4.01)-f (3.99) 1.3888 –1.3838 = 0.25 2(0.01) 0.02 Dört nokta için birinci türev -f(4.02)+8f(4.01) – 8f (3.99)+ f(3.98) (-1.3913)+8(1.3888) – 8(1.3838)+1.3813 S'(4.0) = =0.25 12(0.01) 12(0.01) Analitik çözüm f(x) = In (x) → f(x)=1/x → f'(4.0)= 0.25 Using the solution format given above, obtain the second, third and fourth order derivatives of the function f (x) = In (x). Compare the results you get with the numerical solution with the derivatives you get with the analytical solution for the relevant function.
First Derivative Error f'(x) =: 2h -f(x)+8f(x,)-8f(x,-) + f(x,-2) 12h f'(x) = Second Derivative f(x)- 2f(x) + f(x,) f"(x) = O(h) f) + 16f(z,) - 30f(x) + 16f(x,1) - {(x, ) 12A fx) = Third Derivative f(4,,) – 2f(x) + 2f(x)-f(x_ ) (x) = -f(x,,) + 8ƒ(x,,2) – 13f(x,,) + 13ƒ(x,.) – 8ƒ(x_2) + f() f"(x,) = 8A Fourth Derivative f(x)-4f(x) +6f(x) – 4f(x,-)+ f(x,_2) "(x) = Ea-) + 12f(x,;) + 39f(x,.) + 56f(x) – 39f(x,-) + 12ƒ(x,_,) + f(K,) In the above table, the formulations to calculate different order derivatives of a function are given by using the central difference method. For the function f (x) = In (x), obtain the first, second, third and fourth order derivatives of this function by using the above methods for the neighborhood step h = 0.01 at the point x = 4.0. Soru çözüm formatı oluşturması adına birinci türevin elde edilme yöntemi aşağıda verilmiştir f(x) = In (x) ƒ(4.0) = ? f "(4.0) =? f"(4.0)= ? ƒ "(4.0) = ? h= 0.01 için x, = 4.00 x = 4.01 x = 3.99 x2 = 4.02 x-2 = 3.98 İki nokta için birinci türev S'(4.0) = f (4.01)-f (3.99) 1.3888 –1.3838 = 0.25 2(0.01) 0.02 Dört nokta için birinci türev -f(4.02)+8f(4.01) – 8f (3.99)+ f(3.98) (-1.3913)+8(1.3888) – 8(1.3838)+1.3813 S'(4.0) = =0.25 12(0.01) 12(0.01) Analitik çözüm f(x) = In (x) → f(x)=1/x → f'(4.0)= 0.25 Using the solution format given above, obtain the second, third and fourth order derivatives of the function f (x) = In (x). Compare the results you get with the numerical solution with the derivatives you get with the analytical solution for the relevant function.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Topic Video
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 4 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,