Find y' if y = In(7x² + 3y²). y' =

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Problem:**

Find \( y' \) if \( y = \ln(7x^2 + 3y^2) \).

**Solution:**

To find the derivative \( y' \), we need to apply implicit differentiation to the given function \( y = \ln(7x^2 + 3y^2) \).

**Steps:**

1. Differentiate both sides with respect to \( x \):
   \[
   \frac{d}{dx}[y] = \frac{d}{dx}[\ln(7x^2 + 3y^2)]
   \]

2. The derivative of \( y \) with respect to \( x \) is \( y' \).

3. For the right side, use the chain rule:
   \[
   \frac{1}{7x^2 + 3y^2} \cdot (14x + 6yy')
   \]

4. Equate and solve for \( y' \):
   \[
   y' = \frac{14x + 6yy'}{7x^2 + 3y^2}
   \]

**Final expression for \( y' \):**

Organize the terms and solve for \( y' \) to find the complete expression.
Transcribed Image Text:**Problem:** Find \( y' \) if \( y = \ln(7x^2 + 3y^2) \). **Solution:** To find the derivative \( y' \), we need to apply implicit differentiation to the given function \( y = \ln(7x^2 + 3y^2) \). **Steps:** 1. Differentiate both sides with respect to \( x \): \[ \frac{d}{dx}[y] = \frac{d}{dx}[\ln(7x^2 + 3y^2)] \] 2. The derivative of \( y \) with respect to \( x \) is \( y' \). 3. For the right side, use the chain rule: \[ \frac{1}{7x^2 + 3y^2} \cdot (14x + 6yy') \] 4. Equate and solve for \( y' \): \[ y' = \frac{14x + 6yy'}{7x^2 + 3y^2} \] **Final expression for \( y' \):** Organize the terms and solve for \( y' \) to find the complete expression.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning