Find y' for 4x + 5y* – 1 = 132 at the point (2, – 1). | At (2, – 1), y' = Preview %3D

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Problem:**

Find \( y' \) for \( 4x^5 + 5y^4 - 1 = 132 \) at the point \( (2, -1) \).

**Solution:**

To find the derivative \( y' \), use implicit differentiation:

1. Differentiate both sides of the equation with respect to \( x \).
2. Solve for \( y' \).

**Equation:**
\[ 4x^5 + 5y^4 - 1 = 132 \]

**Differentiate:**
\[ \frac{d}{dx}(4x^5) + \frac{d}{dx}(5y^4) = \frac{d}{dx}(132) \]

**Simplified:**
\[ 20x^4 + 20y^3y' = 0 \]

Solve for \( y' \) at the point \( (2, -1) \):

**Substitute:**
\[ 20(2)^4 + 20(-1)^3y' = 0 \]
\[ 320 - 20y' = 0 \]
\[ -20y' = -320 \]
\[ y' = 16 \]

**Result:**

At \( (2, -1) \), \( y' = 16 \).
Transcribed Image Text:**Problem:** Find \( y' \) for \( 4x^5 + 5y^4 - 1 = 132 \) at the point \( (2, -1) \). **Solution:** To find the derivative \( y' \), use implicit differentiation: 1. Differentiate both sides of the equation with respect to \( x \). 2. Solve for \( y' \). **Equation:** \[ 4x^5 + 5y^4 - 1 = 132 \] **Differentiate:** \[ \frac{d}{dx}(4x^5) + \frac{d}{dx}(5y^4) = \frac{d}{dx}(132) \] **Simplified:** \[ 20x^4 + 20y^3y' = 0 \] Solve for \( y' \) at the point \( (2, -1) \): **Substitute:** \[ 20(2)^4 + 20(-1)^3y' = 0 \] \[ 320 - 20y' = 0 \] \[ -20y' = -320 \] \[ y' = 16 \] **Result:** At \( (2, -1) \), \( y' = 16 \).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning