Find the x center of mass of the following masses at their respective coordinates: m1=1.5, x1=0.6,y1=-0.8 m2=4.0, x2=-0.8,y2=-2.8 m3=2.5, x3=-1.2,y3=-5.0 X_com=?

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Topic Video
Question
### Calculating the Center of Mass in the \(x\)-Direction

To find the \(x\) center of mass (\(x_{com}\)) of the given masses at their respective coordinates, follow these steps:

Given data:

- \(m_1 = 1.5\), \(x_1 = 0.6\), \(y_1 = -0.8\)
- \(m_2 = 4.0\), \(x_2 = -0.8\), \(y_2 = -2.8\)
- \(m_3 = 2.5\), \(x_3 = -1.2\), \(y_3 = -5.0\)

The formula to find the \(x\) center of mass ( \(x_{com}\) ) is:

\[ 
x_{com} = \frac{\sum (m_i \cdot x_i)}{\sum m_i} 
\]

**Step-by-Step Calculation:**

1. Calculate the numerator of the \(x_{com}\):

\[
\sum (m_i \cdot x_i) = (m_1 \cdot x_1) + (m_2 \cdot x_2) + (m_3 \cdot x_3)
\]

\[
= (1.5 \cdot 0.6) + (4.0 \cdot -0.8) + (2.5 \cdot -1.2)
\]

\[
= 0.9 + (-3.2) + (-3.0)
\]

\[
= 0.9 - 3.2 - 3.0
\]

\[
= -5.3 
\]

2. Calculate the denominator of the \(x_{com}\):

\[
\sum m_i = m_1 + m_2 + m_3
\]

\[
= 1.5 + 4.0 + 2.5 = 8.0
\]

3. Divide the numerator by the denominator to find the \(x_{com}\):

\[
x_{com} = \frac{-5.3}{8.0} \approx -0.6625
\]

Therefore, the \(x\) center of mass (\(x_{com}\)) of the given masses is approximately \(-0.6625\).
Transcribed Image Text:### Calculating the Center of Mass in the \(x\)-Direction To find the \(x\) center of mass (\(x_{com}\)) of the given masses at their respective coordinates, follow these steps: Given data: - \(m_1 = 1.5\), \(x_1 = 0.6\), \(y_1 = -0.8\) - \(m_2 = 4.0\), \(x_2 = -0.8\), \(y_2 = -2.8\) - \(m_3 = 2.5\), \(x_3 = -1.2\), \(y_3 = -5.0\) The formula to find the \(x\) center of mass ( \(x_{com}\) ) is: \[ x_{com} = \frac{\sum (m_i \cdot x_i)}{\sum m_i} \] **Step-by-Step Calculation:** 1. Calculate the numerator of the \(x_{com}\): \[ \sum (m_i \cdot x_i) = (m_1 \cdot x_1) + (m_2 \cdot x_2) + (m_3 \cdot x_3) \] \[ = (1.5 \cdot 0.6) + (4.0 \cdot -0.8) + (2.5 \cdot -1.2) \] \[ = 0.9 + (-3.2) + (-3.0) \] \[ = 0.9 - 3.2 - 3.0 \] \[ = -5.3 \] 2. Calculate the denominator of the \(x_{com}\): \[ \sum m_i = m_1 + m_2 + m_3 \] \[ = 1.5 + 4.0 + 2.5 = 8.0 \] 3. Divide the numerator by the denominator to find the \(x_{com}\): \[ x_{com} = \frac{-5.3}{8.0} \approx -0.6625 \] Therefore, the \(x\) center of mass (\(x_{com}\)) of the given masses is approximately \(-0.6625\).
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Momentum
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON