Find the work done by F = (x² + y)i + (y² + x)j + ze²k over the following paths from (2,0,0) to (2,0,4). a. The line segment x = 2, y = 0, 0≤z≤4 b.The helix r(t) = (2cos t)i + (2sin t)j + c. The x-axis from (2,0,0) to (0,0,0) followed by the parabola z = x², y = 0 from (0,0,0) to (2,0,4) b. Find The work done by F over the line segment is 3e4 +1. O A. B. C. df dt df dt df dt for F. = 1 //( 3 os ³t). + costsint+ 1 1/T 2t (2) ► = sint+ cost+ -e π k, 0≤t≤2 1 +7 ( sin ³t) + 2t 21/x - 21/x e π The work done by F over the helix is df 4t = cos ³t+2 costsint+ sin ³t+ 2e²1/7- dt 2t/x_2t/ e 2 + + df -= -8 cos ²t sint-4 sin ²t + 8 sin ²t cost + 4 cos dt 4t (2,0,4) 2t/x Z=X (2,0,0) (0,0,0)
Find the work done by F = (x² + y)i + (y² + x)j + ze²k over the following paths from (2,0,0) to (2,0,4). a. The line segment x = 2, y = 0, 0≤z≤4 b.The helix r(t) = (2cos t)i + (2sin t)j + c. The x-axis from (2,0,0) to (0,0,0) followed by the parabola z = x², y = 0 from (0,0,0) to (2,0,4) b. Find The work done by F over the line segment is 3e4 +1. O A. B. C. df dt df dt df dt for F. = 1 //( 3 os ³t). + costsint+ 1 1/T 2t (2) ► = sint+ cost+ -e π k, 0≤t≤2 1 +7 ( sin ³t) + 2t 21/x - 21/x e π The work done by F over the helix is df 4t = cos ³t+2 costsint+ sin ³t+ 2e²1/7- dt 2t/x_2t/ e 2 + + df -= -8 cos ²t sint-4 sin ²t + 8 sin ²t cost + 4 cos dt 4t (2,0,4) 2t/x Z=X (2,0,0) (0,0,0)
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Find the work done by F = (x² + y)i + (y² + x)j + ze²k over the
following paths from (2,0,0) to (2,0,4).
a. The line segment x = 2, y = 0, 0≤z≤4
b.The helix r(t) = (2cos t)i + (2sin t)j +
c.The x-axis from (2,0,0) to (0,0,0) followed by the parabola
z = x, y = 0 from (0,0,0) to (2,0,4)
b. Find
The work done by F over the line segment is 3e² + 1.
A.
B.
C.
df
dt
df
dt
df
dt
df
dt
df
D. dt
for F.
1
2t
1/2/(
cos ³t) + costsint+ (sin ³t) + ²t 12t/x_21/x
- e
π
sint + cost + e
π
= COS
π
1 1/T
-=-=-=e¹/x
= - 8 cos
k, 0≤t≤2n
³t+2 costsint+ sin ³t+
The work done by F over the helix is
4t
π²
2t/r_2t/r
-e
2tsint-4 sin ²t + 8 sin ²t cost + 4 cos²t+
(2,0,4)
4t 21/1
∙e
Z=X
Z
(2,0,0)
(0,0,0)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fc6130a4b-a35e-43ae-bbc1-192b7918f58f%2F531492e6-db5a-4e80-ba15-9b2e065349da%2Ffxyypbe_processed.png&w=3840&q=75)
Transcribed Image Text:Find the work done by F = (x² + y)i + (y² + x)j + ze²k over the
following paths from (2,0,0) to (2,0,4).
a. The line segment x = 2, y = 0, 0≤z≤4
b.The helix r(t) = (2cos t)i + (2sin t)j +
c.The x-axis from (2,0,0) to (0,0,0) followed by the parabola
z = x, y = 0 from (0,0,0) to (2,0,4)
b. Find
The work done by F over the line segment is 3e² + 1.
A.
B.
C.
df
dt
df
dt
df
dt
df
dt
df
D. dt
for F.
1
2t
1/2/(
cos ³t) + costsint+ (sin ³t) + ²t 12t/x_21/x
- e
π
sint + cost + e
π
= COS
π
1 1/T
-=-=-=e¹/x
= - 8 cos
k, 0≤t≤2n
³t+2 costsint+ sin ³t+
The work done by F over the helix is
4t
π²
2t/r_2t/r
-e
2tsint-4 sin ²t + 8 sin ²t cost + 4 cos²t+
(2,0,4)
4t 21/1
∙e
Z=X
Z
(2,0,0)
(0,0,0)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)