Find the velocity vector v(t), given the acceleration vector a(t) = (3e¹, (Use symbolic notation and fractions where needed. Give your answer in the vector form.) v(r) = 2(e-2)i + (3r-2)j + (3² +9r+2)k 9) and the initial velocit Incorrect

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Question
## Finding the Velocity Vector \( \mathbf{v}(t) \)

### Problem Statement:
Given the acceleration vector \( \mathbf{a}(t) = \left(3e^t, 7, 10t + 9\right) \) and the initial velocity \( \mathbf{v}(0) = \left(8, -5, 3\right) \), find the velocity vector \( \mathbf{v}(t) \).

### Solution Strategy:
To find the velocity vector \( \mathbf{v}(t) \), we need to integrate the acceleration vector \( \mathbf{a}(t) \).

1. **Integrate each component of \( \mathbf{a}(t) \):**
   - The i-component: \( 3e^t \)
   - The j-component: \( 7 \)
   - The k-component: \( 10t + 9 \)

2. **Apply initial conditions to determine the constants of integration.**

### Calculation:

1. **Integrate the i-component:**
   \[
   \int 3e^t \, dt = 3e^t + C_1
   \]

2. **Integrate the j-component:**
   \[
   \int 7 \, dt = 7t + C_2
   \]

3. **Integrate the k-component:**
   \[
   \int (10t + 9) \, dt = 5t^2 + 9t + C_3
   \]

4. **Form the general solution for \( \mathbf{v}(t) \):**
   \[
   \mathbf{v}(t) = (3e^t + C_1)\mathbf{i} + (7t + C_2)\mathbf{j} + (5t^2 + 9t + C_3)\mathbf{k}
   \]

5. **Apply the initial condition \( \mathbf{v}(0) = (8, -5, 3) \):**

   - i-component: \( 3e^0 + C_1 = 8 \)
     \[
     3 \cdot 1 + C_1 = 8 \implies C_1 = 5
     \]

   - j-component: \( 7 \cdot 0 + C_2 = -5
Transcribed Image Text:## Finding the Velocity Vector \( \mathbf{v}(t) \) ### Problem Statement: Given the acceleration vector \( \mathbf{a}(t) = \left(3e^t, 7, 10t + 9\right) \) and the initial velocity \( \mathbf{v}(0) = \left(8, -5, 3\right) \), find the velocity vector \( \mathbf{v}(t) \). ### Solution Strategy: To find the velocity vector \( \mathbf{v}(t) \), we need to integrate the acceleration vector \( \mathbf{a}(t) \). 1. **Integrate each component of \( \mathbf{a}(t) \):** - The i-component: \( 3e^t \) - The j-component: \( 7 \) - The k-component: \( 10t + 9 \) 2. **Apply initial conditions to determine the constants of integration.** ### Calculation: 1. **Integrate the i-component:** \[ \int 3e^t \, dt = 3e^t + C_1 \] 2. **Integrate the j-component:** \[ \int 7 \, dt = 7t + C_2 \] 3. **Integrate the k-component:** \[ \int (10t + 9) \, dt = 5t^2 + 9t + C_3 \] 4. **Form the general solution for \( \mathbf{v}(t) \):** \[ \mathbf{v}(t) = (3e^t + C_1)\mathbf{i} + (7t + C_2)\mathbf{j} + (5t^2 + 9t + C_3)\mathbf{k} \] 5. **Apply the initial condition \( \mathbf{v}(0) = (8, -5, 3) \):** - i-component: \( 3e^0 + C_1 = 8 \) \[ 3 \cdot 1 + C_1 = 8 \implies C_1 = 5 \] - j-component: \( 7 \cdot 0 + C_2 = -5
Expert Solution
steps

Step by step

Solved in 3 steps with 6 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,