Find the vector x determined by the coordinate vector ---(DBE) 8 and the basis B = 0 XB = The vector x = The vector x = The vector x = 1 7 -3 -2 -27 H 0 5 3 2 4 []} 3

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Solve this mutliple choice linear algebra question.

**Finding the Vector \( \mathbf{x} \) Based on Coordinate Vector \( \mathbf{x}_{\mathcal{B}} \)**

The task is to determine the vector \( \mathbf{x} \) based on the given coordinate vector \( \mathbf{x}_{\mathcal{B}} \) and the basis \( \mathcal{B} \).

Given data:
\[ \mathbf{x}_{\mathcal{B}} = \begin{bmatrix} -4 \\ 8 \\ -7 \end{bmatrix} \]
and the basis \( \mathcal{B} \) is:
\[ \mathcal{B} = \left\{ \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ -5 \\ 2 \end{bmatrix}, \begin{bmatrix} 4 \\ -7 \\ 3 \end{bmatrix} \right\} \]

Next, we need to identify the vector \( \mathbf{x} \) from the given multiple choice options.

### Options Provided:

1. \(\mathbf{x} = \begin{bmatrix} 0 \\ 1 \\ -5 \end{bmatrix}\)
2. \(\mathbf{x} = \begin{bmatrix} 7 \\ -3 \\ -2 \end{bmatrix}\) <span style="background-color: #E6E6FA;">(Selected)</span>
3. \(\mathbf{x} = \begin{bmatrix} -2 \\ 0 \\ 5 \end{bmatrix}\)

### Explanation of the Provided Basis and Coordinate Vector

A basis in linear algebra is a set of linearly independent vectors in a vector space such that any vector in the space can be expressed as a linear combination of these basis vectors. The given basis consists of three vectors:
\[ \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ -5 \\ 2 \end{bmatrix}, \begin{bmatrix} 4 \\ -7 \\ 3 \end{bmatrix} \]

Given that these vectors form a basis for the space, the vector \( \mathbf{x} \) can be written as a linear combination of these basis vectors, weighted by the coefficients in \( \mathbf{x}_{\mathcal{B}}
Transcribed Image Text:**Finding the Vector \( \mathbf{x} \) Based on Coordinate Vector \( \mathbf{x}_{\mathcal{B}} \)** The task is to determine the vector \( \mathbf{x} \) based on the given coordinate vector \( \mathbf{x}_{\mathcal{B}} \) and the basis \( \mathcal{B} \). Given data: \[ \mathbf{x}_{\mathcal{B}} = \begin{bmatrix} -4 \\ 8 \\ -7 \end{bmatrix} \] and the basis \( \mathcal{B} \) is: \[ \mathcal{B} = \left\{ \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ -5 \\ 2 \end{bmatrix}, \begin{bmatrix} 4 \\ -7 \\ 3 \end{bmatrix} \right\} \] Next, we need to identify the vector \( \mathbf{x} \) from the given multiple choice options. ### Options Provided: 1. \(\mathbf{x} = \begin{bmatrix} 0 \\ 1 \\ -5 \end{bmatrix}\) 2. \(\mathbf{x} = \begin{bmatrix} 7 \\ -3 \\ -2 \end{bmatrix}\) <span style="background-color: #E6E6FA;">(Selected)</span> 3. \(\mathbf{x} = \begin{bmatrix} -2 \\ 0 \\ 5 \end{bmatrix}\) ### Explanation of the Provided Basis and Coordinate Vector A basis in linear algebra is a set of linearly independent vectors in a vector space such that any vector in the space can be expressed as a linear combination of these basis vectors. The given basis consists of three vectors: \[ \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ -5 \\ 2 \end{bmatrix}, \begin{bmatrix} 4 \\ -7 \\ 3 \end{bmatrix} \] Given that these vectors form a basis for the space, the vector \( \mathbf{x} \) can be written as a linear combination of these basis vectors, weighted by the coefficients in \( \mathbf{x}_{\mathcal{B}}
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,