Find the vector a determined by || Bug Bounty 2 2 -408)~A -Ĥ 5 = B

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

I need help with these 2 problems please help me

The task is to find the vector \( \vec{x} \) determined by a given basis \( \mathcal{B} \) and the coordinate vector of \( \vec{x} \) with respect to \( \mathcal{B} \).

**Description of the Given Information:**

- The basis \( \mathcal{B} \) consists of three vectors:
  \[
  \mathcal{B} = \left\{ \begin{bmatrix} 2 \\ -6 \\ -2 \end{bmatrix}, \begin{bmatrix} -2 \\ 5 \\ 4 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} \right\}
  \]

- The coordinate vector of \( \vec{x} \) with respect to the basis \( \mathcal{B} \) is:
  \[
  \left[ \vec{x} \right]_{\mathcal{B}} = \begin{bmatrix} -2 \\ 3 \\ 1 \end{bmatrix}
  \]

- The vector \( \vec{x} \) is expressed in terms of the basis vectors and the coordinate vector.

**Solution:**

To find the vector \( \vec{x} \), perform the following calculation involving the basis vectors and the coefficients from the coordinate vector:
\[
\vec{x} = -2 \begin{bmatrix} 2 \\ -6 \\ -2 \end{bmatrix} + 3 \begin{bmatrix} -2 \\ 5 \\ 4 \end{bmatrix} + 1 \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}
\] 

**Bug Bounty:** There is a button labeled "Bug Bounty," which likely indicates an option for users to report issues or errors related to the problem.
Transcribed Image Text:The task is to find the vector \( \vec{x} \) determined by a given basis \( \mathcal{B} \) and the coordinate vector of \( \vec{x} \) with respect to \( \mathcal{B} \). **Description of the Given Information:** - The basis \( \mathcal{B} \) consists of three vectors: \[ \mathcal{B} = \left\{ \begin{bmatrix} 2 \\ -6 \\ -2 \end{bmatrix}, \begin{bmatrix} -2 \\ 5 \\ 4 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} \right\} \] - The coordinate vector of \( \vec{x} \) with respect to the basis \( \mathcal{B} \) is: \[ \left[ \vec{x} \right]_{\mathcal{B}} = \begin{bmatrix} -2 \\ 3 \\ 1 \end{bmatrix} \] - The vector \( \vec{x} \) is expressed in terms of the basis vectors and the coordinate vector. **Solution:** To find the vector \( \vec{x} \), perform the following calculation involving the basis vectors and the coefficients from the coordinate vector: \[ \vec{x} = -2 \begin{bmatrix} 2 \\ -6 \\ -2 \end{bmatrix} + 3 \begin{bmatrix} -2 \\ 5 \\ 4 \end{bmatrix} + 1 \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} \] **Bug Bounty:** There is a button labeled "Bug Bounty," which likely indicates an option for users to report issues or errors related to the problem.
Find the coordinate vector, \([\vec{x}]_{\mathcal{B}}\), of \(\vec{x}\) relative to the basis \(\mathcal{B}\).

\[
\mathcal{B} = \left\{ \begin{bmatrix} 2 \\ 2 \\ 4 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 2 \end{bmatrix}, \begin{bmatrix} 4 \\ 0 \\ 18 \end{bmatrix} \right\}, \quad \vec{x} = \begin{bmatrix} 8 \\ -6 \\ 50 \end{bmatrix}
\]

\[
[\vec{x}]_{\mathcal{B}} = \boxed{\phantom{xxx}}
\]

[Note: There is a "Bug Bounty" button below the input box.]
Transcribed Image Text:Find the coordinate vector, \([\vec{x}]_{\mathcal{B}}\), of \(\vec{x}\) relative to the basis \(\mathcal{B}\). \[ \mathcal{B} = \left\{ \begin{bmatrix} 2 \\ 2 \\ 4 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 2 \end{bmatrix}, \begin{bmatrix} 4 \\ 0 \\ 18 \end{bmatrix} \right\}, \quad \vec{x} = \begin{bmatrix} 8 \\ -6 \\ 50 \end{bmatrix} \] \[ [\vec{x}]_{\mathcal{B}} = \boxed{\phantom{xxx}} \] [Note: There is a "Bug Bounty" button below the input box.]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,