Find the trigonometric Fourier series for the function f(x): [-π/2, π/2] → R given by the expression: f(x) = ²/2/² FS(x) = FS(x)= FS(x) sinh a 75 = O FS(z) =sinh7|1+2% (-1) (cos 2n +nsin 2ng) ] e)]. sinh a 71 2 sin T T [12 + Σn=1 n²+1 (-1)" (cos 2nx √2+ (-1)" + Σn=1 n²+1 (-1)" sin 2nx) +Σn=1 n+1 (cos 2nx - n sin 2nx) (cos 2nx -n sin 2nx) 2nx)].

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Find the trigonometric Fourier series for the function f(x): [-π/2, π/2] → R given by the
expression:
f(x) = ²2
FS(x)
FS(x) =
sinh n
π
FS(x) =
FS(x)=sinh 7|1+2
2
sinh n
T
(-1)^
+ Σn=1 n²+1
(-1)"
inh 71 2n=1 n²+1
sin T
π
1 + ΣΩ
+
-(cos 2nx
(-1)"
n=1 n²+1
+ ΣΩ
sin 2nx)
-(cos 2nx + n sin 2nx)
(cos 2nx n sin 2nx
(-1)" (cos 2nx
n+1
>]
-n sin 2nx)
2nx)].
Transcribed Image Text:Find the trigonometric Fourier series for the function f(x): [-π/2, π/2] → R given by the expression: f(x) = ²2 FS(x) FS(x) = sinh n π FS(x) = FS(x)=sinh 7|1+2 2 sinh n T (-1)^ + Σn=1 n²+1 (-1)" inh 71 2n=1 n²+1 sin T π 1 + ΣΩ + -(cos 2nx (-1)" n=1 n²+1 + ΣΩ sin 2nx) -(cos 2nx + n sin 2nx) (cos 2nx n sin 2nx (-1)" (cos 2nx n+1 >] -n sin 2nx) 2nx)].
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,