Find the trigonometric Fourier series for the function f(a): -1, 1] →→R given by the expression: f(x) = O (0 if a € (-1,0] [1 + x if a € (0, 1] FS(x) = +Σ-1 1+2(-1)" 1 11.7 -cos(nπx) + (-1)"-1 1²7² sin(nee)).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Only typed solution

Find the trigonometric Fourier series for the function f(a): [-1, 1] → R given by the
expression:
f(x) =
f0ifa E [-1,0]
1 + x if x € (0, 1]
FS(x) = =+=1
FS(x) = ³ + Σ=1
FS(x) = ³ + -1
FS(x) = ³ + Σ=1
1+2(-1)"
THAT
(-1)"-1
7² 7²
(-1)"-1
TUTT
-cos(nTX) +
(-1)" +1
n²7²
cos(nar) +
-сos (nπx)
(-1)"-1
n²π²
-cos(na) + 1-2(1) sin(n=x)
71272
-
-sin(nπx)
1-2(-1) sin(x)
72.75
1+2(-1)"
VZ7T
sin(nTx)
Transcribed Image Text:Find the trigonometric Fourier series for the function f(a): [-1, 1] → R given by the expression: f(x) = f0ifa E [-1,0] 1 + x if x € (0, 1] FS(x) = =+=1 FS(x) = ³ + Σ=1 FS(x) = ³ + -1 FS(x) = ³ + Σ=1 1+2(-1)" THAT (-1)"-1 7² 7² (-1)"-1 TUTT -cos(nTX) + (-1)" +1 n²7² cos(nar) + -сos (nπx) (-1)"-1 n²π² -cos(na) + 1-2(1) sin(n=x) 71272 - -sin(nπx) 1-2(-1) sin(x) 72.75 1+2(-1)" VZ7T sin(nTx)
Expert Solution
steps

Step by step

Solved in 5 steps with 6 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,