Find the Taylor polynomial of order 2 for e* , centered about x, =1. A) e' (1–7(x-1)+49(;x–1)*) 49(x–1) B) e'|1-7(x – 1)+ 2 49(x – 1)² C) e'|1+7(x – 1)+ 2 D) e' (1-(x-1)+(x-1)*) E) e' (1+(x-1)-(x-1))

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
The problem is to find the Taylor polynomial of order 2 for the function \( e^{7x} \), centered about \( x_0 = 1 \).

Options are as follows:

A) \( e^7 \left( 1 - 7(x-1) + 49(x-1)^2 \right) \)

B) \( e^7 \left[ 1 - 7(x-1) + \frac{49(x-1)^2}{2} \right] \)

C) \( e^7 \left[ 1 + 7(x-1) + \frac{49(x-1)^2}{2} \right] \)

D) \( e^7 \left( 1 - (x-1) + (x-1)^2 \right) \)

E) \( e^7 \left( 1 + (x-1) - (x-1)^2 \right) \)
Transcribed Image Text:The problem is to find the Taylor polynomial of order 2 for the function \( e^{7x} \), centered about \( x_0 = 1 \). Options are as follows: A) \( e^7 \left( 1 - 7(x-1) + 49(x-1)^2 \right) \) B) \( e^7 \left[ 1 - 7(x-1) + \frac{49(x-1)^2}{2} \right] \) C) \( e^7 \left[ 1 + 7(x-1) + \frac{49(x-1)^2}{2} \right] \) D) \( e^7 \left( 1 - (x-1) + (x-1)^2 \right) \) E) \( e^7 \left( 1 + (x-1) - (x-1)^2 \right) \)
Expert Solution
Step 1

We will find out the required value.

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,