Find the surface area of the torus with parametric equations: r(u, v) = ((4+ cos v) cosu, (4+cos v)sinu, sin v) 0≤u≤2T, 0≤v≤2n Some Helpful Formulas: S3* sin ᎾdᎾ = , " cosᎾdᎾ =0 sin² 0d0 =[* cos² 0d0 = T [sin' ode=-cos+cos³0+C [cos³0d0 = sin 0 -- sin³ 0+ C

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
EC, Write on paper only! Give EXACT answers and no decimals.
Find the surface area of the torus with parametric equations:
r(u, v) = ((4+ cos v) cosu, (4+cosv)sinu, sin v)
0≤u≤2T, 0≤v≤2n
Some Helpful Formulas:
sin Odo= cos 0d0 =0
[₁ª sin² 0d0 =[°¸˜ cos² 0d0 = π
[sin' ode=- cos 0+cos³0+C
[cos³ ode=sin -- -sin 0+ C
3
Transcribed Image Text:Find the surface area of the torus with parametric equations: r(u, v) = ((4+ cos v) cosu, (4+cosv)sinu, sin v) 0≤u≤2T, 0≤v≤2n Some Helpful Formulas: sin Odo= cos 0d0 =0 [₁ª sin² 0d0 =[°¸˜ cos² 0d0 = π [sin' ode=- cos 0+cos³0+C [cos³ ode=sin -- -sin 0+ C 3
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,