Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![### Problem Description
Find the sum; write your answer as a fraction
\[ \sum_{k=1}^{8} 3 \left(\frac{1}{4}\right)^{k-1} \]
### Explanation
This is a summation problem where you need to find the sum of a geometric series. The notation \(\sum_{k=1}^{8}\) indicates that we are summing from \(k=1\) to \(k=8\). Each term in the series is given by the formula \(3 \left(\frac{1}{4}\right)^{k-1}\).
### Solution Steps
1. **Identify the first term and common ratio:**
- First term (\(a\)): When \(k=1\), the term is \(3 \left(\frac{1}{4}\right)^{1-1} = 3(1) = 3\).
- Common ratio (\(r\)): The base of the exponent in the term formula is \(\frac{1}{4}\).
2. **Use the formula for the sum of first \(n\) terms of a geometric series:**
\[
S_n = \frac{a(1 - r^n)}{1 - r}
\]
Here, \(a = 3\), \(r = \frac{1}{4}\), and \(n = 8\).
3. **Substitute the values into the formula:**
\[
S_8 = \frac{3(1 - (\frac{1}{4})^8)}{1 - \frac{1}{4}}
\]
4. **Calculate the power and difference:**
\[
(\frac{1}{4})^8 = \frac{1}{65536}
\]
\[
1 - \frac{1}{65536} = \frac{65536 - 1}{65536} = \frac{65535}{65536}
\]
5. **Substitute back into the sum formula:**
\[
S_8 = \frac{3 \cdot \frac{65535}{65536}}{\frac{3}{4}} = \frac{3 \cdot 65535}{65536} \times \frac{4}{3}
\]
\[
S_8](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F6c88b4b6-4152-4350-b43c-eadd21488152%2Fccbcf50d-0baa-403f-bff9-e4ecb539530b%2Fkvu8zsp_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Problem Description
Find the sum; write your answer as a fraction
\[ \sum_{k=1}^{8} 3 \left(\frac{1}{4}\right)^{k-1} \]
### Explanation
This is a summation problem where you need to find the sum of a geometric series. The notation \(\sum_{k=1}^{8}\) indicates that we are summing from \(k=1\) to \(k=8\). Each term in the series is given by the formula \(3 \left(\frac{1}{4}\right)^{k-1}\).
### Solution Steps
1. **Identify the first term and common ratio:**
- First term (\(a\)): When \(k=1\), the term is \(3 \left(\frac{1}{4}\right)^{1-1} = 3(1) = 3\).
- Common ratio (\(r\)): The base of the exponent in the term formula is \(\frac{1}{4}\).
2. **Use the formula for the sum of first \(n\) terms of a geometric series:**
\[
S_n = \frac{a(1 - r^n)}{1 - r}
\]
Here, \(a = 3\), \(r = \frac{1}{4}\), and \(n = 8\).
3. **Substitute the values into the formula:**
\[
S_8 = \frac{3(1 - (\frac{1}{4})^8)}{1 - \frac{1}{4}}
\]
4. **Calculate the power and difference:**
\[
(\frac{1}{4})^8 = \frac{1}{65536}
\]
\[
1 - \frac{1}{65536} = \frac{65536 - 1}{65536} = \frac{65535}{65536}
\]
5. **Substitute back into the sum formula:**
\[
S_8 = \frac{3 \cdot \frac{65535}{65536}}{\frac{3}{4}} = \frac{3 \cdot 65535}{65536} \times \frac{4}{3}
\]
\[
S_8
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Recommended textbooks for you

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning