Find the state transition matrix of the following system: = [] C = [0_1] 2 where A = [¹4²] -4 O a. O b. О с. O d. [e-t(cos2t + sin2t) 2e-tsin2t [e-t (cos2t + sin2t) (cos2t + sin2t) -2e-tsin2t e-t(cos2t + sin2t) B = e-tsin2t e-t(cos2t - sin2t)] -e-tsin2t e-t(cos2t - sin2t) -e-tsin2t e-t (cos2t - sin2t) e-tsin2t e-t(cos2t - sin2t) t(cos2t + sin2t) e-tsin2t e-t(cos2t - sin2t)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

LINEAR SYSTEMS

Find the state transition matrix of the following system:
2
where A = [¹4²] B
C = [01]
O a.
O b.
O c.
O d.
[e-t(cos2t + sin2t)
[e-t (cos2t + sin2t)
2e-tsin2t
[e-t (cos2t + sin2t)
[e-t(co
[e-t(cos2t + sin2t)
-2e-tsin2t
e-tsin2t
e-t(cos2t - sin2t)
-e-tsin2t
e-t(cos2t - sin2t)
-e-tsin2t
e-t (cos2t - sin2t)
e-t sin2t
e-t(cos2t - sin2t)
e-t(cos2t + sin2t)
-2e-tsin2t
e-tsin2t
e-t(cos2t - sin2t)
Transcribed Image Text:Find the state transition matrix of the following system: 2 where A = [¹4²] B C = [01] O a. O b. O c. O d. [e-t(cos2t + sin2t) [e-t (cos2t + sin2t) 2e-tsin2t [e-t (cos2t + sin2t) [e-t(co [e-t(cos2t + sin2t) -2e-tsin2t e-tsin2t e-t(cos2t - sin2t) -e-tsin2t e-t(cos2t - sin2t) -e-tsin2t e-t (cos2t - sin2t) e-t sin2t e-t(cos2t - sin2t) e-t(cos2t + sin2t) -2e-tsin2t e-tsin2t e-t(cos2t - sin2t)
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,