Find the standard T₁: R² T₂: R² A = A' matrices A and A' for T = T₂° T₁ and T' = T₁ ° T₂. R², T₁(x, y) = (x - 4y, 4x + 2y) R², T₂(x, y) = (0, x) ↓ 1

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Instructions to Find Standard Matrices for Transformations**

This exercise involves finding the standard matrices \( A \) and \( A' \) for the given composite linear transformations \( T = T_2 \circ T_1 \) and \( T' = T_1 \circ T_2 \).

### Given Transformations

1. **Transformation \( T_1: \mathbb{R}^2 \rightarrow \mathbb{R}^2 \):** 
   - \( T_1(x, y) = (x - 4y, 4x + 2y) \)

2. **Transformation \( T_2: \mathbb{R}^2 \rightarrow \mathbb{R}^2 \):** 
   - \( T_2(x, y) = (0, x) \)

### Required

**Matrix Representations:**

- **Matrix \( A \) for \( T = T_2 \circ T_1 \):**

\[
A = \begin{bmatrix}
\placeholder & \placeholder \\
\placeholder & \placeholder
\end{bmatrix}
\]

- **Matrix \( A' \) for \( T' = T_1 \circ T_2 \):**

\[
A' = \begin{bmatrix}
\placeholder & \placeholder \\
\placeholder & \placeholder
\end{bmatrix}
\]

#### Explanation:

- Each transformation is mapped from \(\mathbb{R}^2\) to \(\mathbb{R}^2\), which means they operate on two-dimensional vectors.
- Matrices \( A \) and \( A' \) should capture the effect of the transformations on these vectors.
- The placeholders in the matrices are to be filled based on the composition of the transformations \( T_1 \) and \( T_2 \). 

Your task is to determine how these transformations interact when applied in the specified order, and thereby determine the resulting matrix form for each composition.
Transcribed Image Text:**Instructions to Find Standard Matrices for Transformations** This exercise involves finding the standard matrices \( A \) and \( A' \) for the given composite linear transformations \( T = T_2 \circ T_1 \) and \( T' = T_1 \circ T_2 \). ### Given Transformations 1. **Transformation \( T_1: \mathbb{R}^2 \rightarrow \mathbb{R}^2 \):** - \( T_1(x, y) = (x - 4y, 4x + 2y) \) 2. **Transformation \( T_2: \mathbb{R}^2 \rightarrow \mathbb{R}^2 \):** - \( T_2(x, y) = (0, x) \) ### Required **Matrix Representations:** - **Matrix \( A \) for \( T = T_2 \circ T_1 \):** \[ A = \begin{bmatrix} \placeholder & \placeholder \\ \placeholder & \placeholder \end{bmatrix} \] - **Matrix \( A' \) for \( T' = T_1 \circ T_2 \):** \[ A' = \begin{bmatrix} \placeholder & \placeholder \\ \placeholder & \placeholder \end{bmatrix} \] #### Explanation: - Each transformation is mapped from \(\mathbb{R}^2\) to \(\mathbb{R}^2\), which means they operate on two-dimensional vectors. - Matrices \( A \) and \( A' \) should capture the effect of the transformations on these vectors. - The placeholders in the matrices are to be filled based on the composition of the transformations \( T_1 \) and \( T_2 \). Your task is to determine how these transformations interact when applied in the specified order, and thereby determine the resulting matrix form for each composition.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,