Find the standard Matrix Find the standard matrix for the following Q(x) quadratic form Find the eigenvalues Calculate the eigenvalues for the above standard matrix Determine the larger eigenvalue: 19 Determine the second eigenvalue: e Determine the eigenvectors Next, we determine the corresponding eigenvectors for each eigenvalue. At this point we do not yet need to normalize our eigenvectors, but we will do that in a later step Pmatrix If the following vectors are the respective eigenvectors of A, determine the orthogonal matrix P such that A PDP™ With [2] as the first vector in P Hint: Quadratic form new equation Q(x) = 10z² + 122,2₂ +152 10 6 6 The first eigenvector for A=19 has the form (1) Assuming that z=2, enter the eigenvector for A = 19 = 2 3 4 The next eigenvector for A-6 has the form ty=1). Assuming that z=-3, enter the eigenvector for X = 6 A 3 2 2isgrt13 15 3/sqrt13 --3 -2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Find the Standard Matrix

**Objective:**
Find the standard matrix for the quadratic form \( Q(\mathbf{x}) \). 

**Quadratic Form:**
\[ Q(\mathbf{x}) = 10x_1^2 + 12x_1x_2 + 15x_2^2 \]

**Standard Matrix:**
\[
\begin{bmatrix} 
10 & 6 \\ 
6 & 15 
\end{bmatrix}
\]

---

### Find the Eigenvalues

**Objective:**
Calculate the eigenvalues for the above standard matrix.

- **Determine the larger eigenvalue:** 19
- **Determine the second eigenvalue:** 6

---

### Determine the Eigenvectors

**Objective:**
Find the corresponding eigenvectors for each eigenvalue. 

- The first eigenvector for \( \lambda = 19 \) has the form \( \mathbf{v}_1 = \begin{bmatrix} x_1 \\ 2 \\ 3 \end{bmatrix} \). Assuming that \( x_1 = 2 \), enter the eigenvector for \( \lambda = 19 \):

\[
\begin{bmatrix} 
2 \\
2 \\
3 
\end{bmatrix}
\]

- The next eigenvector for \( \lambda = 6 \) has the form \( \mathbf{v}_2 = \begin{bmatrix} x_1 \\ 3 \\ 2 \end{bmatrix} \). Assuming that \( x_1 = -3 \), enter the eigenvector for \( \lambda = 6 \):

\[
\begin{bmatrix} 
-3 \\
3 \\
2 
\end{bmatrix}
\]

---

### P-matrix

**Objective:**
If the following vectors are the respective eigenvectors of \( A \), determine the orthogonal matrix \( P \) such that \( A = PDP^{T} \).

With \(\begin{bmatrix} \frac{2}{\sqrt{13}} \\ \frac{3}{\sqrt{13}} \end{bmatrix}\) as the first vector in \( P \):

\[
\begin{bmatrix} 
\frac{2}{\sqrt{13}} & -3 \\ 
\frac{3}{\sqrt{13}} & 2 
\end{bmatrix}
\]

**Hint:**
No specific
Transcribed Image Text:### Find the Standard Matrix **Objective:** Find the standard matrix for the quadratic form \( Q(\mathbf{x}) \). **Quadratic Form:** \[ Q(\mathbf{x}) = 10x_1^2 + 12x_1x_2 + 15x_2^2 \] **Standard Matrix:** \[ \begin{bmatrix} 10 & 6 \\ 6 & 15 \end{bmatrix} \] --- ### Find the Eigenvalues **Objective:** Calculate the eigenvalues for the above standard matrix. - **Determine the larger eigenvalue:** 19 - **Determine the second eigenvalue:** 6 --- ### Determine the Eigenvectors **Objective:** Find the corresponding eigenvectors for each eigenvalue. - The first eigenvector for \( \lambda = 19 \) has the form \( \mathbf{v}_1 = \begin{bmatrix} x_1 \\ 2 \\ 3 \end{bmatrix} \). Assuming that \( x_1 = 2 \), enter the eigenvector for \( \lambda = 19 \): \[ \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix} \] - The next eigenvector for \( \lambda = 6 \) has the form \( \mathbf{v}_2 = \begin{bmatrix} x_1 \\ 3 \\ 2 \end{bmatrix} \). Assuming that \( x_1 = -3 \), enter the eigenvector for \( \lambda = 6 \): \[ \begin{bmatrix} -3 \\ 3 \\ 2 \end{bmatrix} \] --- ### P-matrix **Objective:** If the following vectors are the respective eigenvectors of \( A \), determine the orthogonal matrix \( P \) such that \( A = PDP^{T} \). With \(\begin{bmatrix} \frac{2}{\sqrt{13}} \\ \frac{3}{\sqrt{13}} \end{bmatrix}\) as the first vector in \( P \): \[ \begin{bmatrix} \frac{2}{\sqrt{13}} & -3 \\ \frac{3}{\sqrt{13}} & 2 \end{bmatrix} \] **Hint:** No specific
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,