Find the speed: r(t) = 9ti + 6tj + 4tk
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Find the speed and refer back to the photo provided
![**Finding Speed from a Vector Function**
**Problem Statement:**
Given the vector function \( \mathbf{r}(t) = 9t\mathbf{i} + 6t\mathbf{j} + 4t\mathbf{k} \), find the speed.
**Solution:**
To find the speed, we need to calculate the magnitude of the velocity vector \( \mathbf{v}(t) \). The velocity vector is the derivative of the position vector function \( \mathbf{r}(t) \).
1. Given:
\[
\mathbf{r}(t) = 9t\mathbf{i} + 6t\mathbf{j} + 4t\mathbf{k}
\]
2. Find the derivative of \( \mathbf{r}(t) \) with respect to \( t \) to obtain \( \mathbf{v}(t) \):
\[
\mathbf{v}(t) = \frac{d}{dt}(9t\mathbf{i} + 6t\mathbf{j} + 4t\mathbf{k}) = 9\mathbf{i} + 6\mathbf{j} + 4\mathbf{k}
\]
3. The speed is the magnitude of the velocity vector \( \mathbf{v}(t) \):
\[
\text{Speed} = \|\mathbf{v}(t)\| = \sqrt{(9)^2 + (6)^2 + (4)^2}
\]
4. Calculate the magnitude:
\[
\text{Speed} = \sqrt{81 + 36 + 16} = \sqrt{133}
\]
Therefore, the speed is \( \sqrt{133} \) units per time unit.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F1fc33cc1-e822-44c8-a303-0b5fd2ff9f49%2F7426eba5-82e1-4d8d-9d04-9a7b83820c65%2F85b1r57_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Finding Speed from a Vector Function**
**Problem Statement:**
Given the vector function \( \mathbf{r}(t) = 9t\mathbf{i} + 6t\mathbf{j} + 4t\mathbf{k} \), find the speed.
**Solution:**
To find the speed, we need to calculate the magnitude of the velocity vector \( \mathbf{v}(t) \). The velocity vector is the derivative of the position vector function \( \mathbf{r}(t) \).
1. Given:
\[
\mathbf{r}(t) = 9t\mathbf{i} + 6t\mathbf{j} + 4t\mathbf{k}
\]
2. Find the derivative of \( \mathbf{r}(t) \) with respect to \( t \) to obtain \( \mathbf{v}(t) \):
\[
\mathbf{v}(t) = \frac{d}{dt}(9t\mathbf{i} + 6t\mathbf{j} + 4t\mathbf{k}) = 9\mathbf{i} + 6\mathbf{j} + 4\mathbf{k}
\]
3. The speed is the magnitude of the velocity vector \( \mathbf{v}(t) \):
\[
\text{Speed} = \|\mathbf{v}(t)\| = \sqrt{(9)^2 + (6)^2 + (4)^2}
\]
4. Calculate the magnitude:
\[
\text{Speed} = \sqrt{81 + 36 + 16} = \sqrt{133}
\]
Therefore, the speed is \( \sqrt{133} \) units per time unit.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

