Find the speed: r(t) = 9ti + 6tj + 4tk

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Find the speed and refer back to the photo provided
**Finding Speed from a Vector Function**

**Problem Statement:**

Given the vector function \( \mathbf{r}(t) = 9t\mathbf{i} + 6t\mathbf{j} + 4t\mathbf{k} \), find the speed.

**Solution:**

To find the speed, we need to calculate the magnitude of the velocity vector \( \mathbf{v}(t) \). The velocity vector is the derivative of the position vector function \( \mathbf{r}(t) \).

1. Given:
   \[
   \mathbf{r}(t) = 9t\mathbf{i} + 6t\mathbf{j} + 4t\mathbf{k}
   \]

2. Find the derivative of \( \mathbf{r}(t) \) with respect to \( t \) to obtain \( \mathbf{v}(t) \):
   \[
   \mathbf{v}(t) = \frac{d}{dt}(9t\mathbf{i} + 6t\mathbf{j} + 4t\mathbf{k}) = 9\mathbf{i} + 6\mathbf{j} + 4\mathbf{k}
   \]

3. The speed is the magnitude of the velocity vector \( \mathbf{v}(t) \):
   \[
   \text{Speed} = \|\mathbf{v}(t)\| = \sqrt{(9)^2 + (6)^2 + (4)^2}
   \]
   
4. Calculate the magnitude:
   \[
   \text{Speed} = \sqrt{81 + 36 + 16} = \sqrt{133}
   \]

Therefore, the speed is \( \sqrt{133} \) units per time unit.
Transcribed Image Text:**Finding Speed from a Vector Function** **Problem Statement:** Given the vector function \( \mathbf{r}(t) = 9t\mathbf{i} + 6t\mathbf{j} + 4t\mathbf{k} \), find the speed. **Solution:** To find the speed, we need to calculate the magnitude of the velocity vector \( \mathbf{v}(t) \). The velocity vector is the derivative of the position vector function \( \mathbf{r}(t) \). 1. Given: \[ \mathbf{r}(t) = 9t\mathbf{i} + 6t\mathbf{j} + 4t\mathbf{k} \] 2. Find the derivative of \( \mathbf{r}(t) \) with respect to \( t \) to obtain \( \mathbf{v}(t) \): \[ \mathbf{v}(t) = \frac{d}{dt}(9t\mathbf{i} + 6t\mathbf{j} + 4t\mathbf{k}) = 9\mathbf{i} + 6\mathbf{j} + 4\mathbf{k} \] 3. The speed is the magnitude of the velocity vector \( \mathbf{v}(t) \): \[ \text{Speed} = \|\mathbf{v}(t)\| = \sqrt{(9)^2 + (6)^2 + (4)^2} \] 4. Calculate the magnitude: \[ \text{Speed} = \sqrt{81 + 36 + 16} = \sqrt{133} \] Therefore, the speed is \( \sqrt{133} \) units per time unit.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,