Find the speed over the path r(t) = (cosh(t), cosh(t), 9t) at t = 2. Use decimal notation. Give your answer to four decimal places.)

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
### Problem Statement
Find the speed over the path \( \mathbf{r}(t) = \langle \cosh(t), \cosh(t), 9t \rangle \) at \( t = 2 \).

(Use decimal notation. Give your answer to four decimal places.)

### Given Answer
\[ v(2) \approx 10.3630 \]
**Status:** Incorrect

---

### Explanation of the Problem
You are given a parametric path described by the vector function \( \mathbf{r}(t) \) with components involving the hyperbolic cosine function \( \cosh(t) \) and a linear term \( 9t \). The goal is to find the speed at a specific time, \( t = 2 \).

### Solution Outline

1. **Compute the derivative \( \mathbf{r}'(t) \)**:
   \[
   \mathbf{r}'(t) = \left\langle \frac{d}{dt} \cosh(t), \frac{d}{dt} \cosh(t), \frac{d}{dt} 9t \right\rangle
   \]

2. **Evaluate the derivative**:
   \[
   \mathbf{r}'(t) = \langle \sinh(t), \sinh(t), 9 \rangle
   \]

3. **Find the magnitude of the derivative (speed)**:
   \[
   v(t) = \|\mathbf{r}'(t)\| = \sqrt{(\sinh(t))^2 + (\sinh(t))^2 + 9^2}
   \]
   Simplify using \(\sinh^2(t) + \sinh^2(t)\):
   \[
   v(t) = \sqrt{2\sinh^2(t) + 81}
   \]

4. **Substitute \( t = 2 \)**:
   \[
   v(2) = \sqrt{2\sinh^2(2) + 81}
   \]
   Compute \( \sinh(2) \):
   \[
   \sinh(2) \approx 3.6269
   \]
   Square the value:
   \[
   \sinh^2(2) \approx 13.1577
   \]

5. **Final Calculation**:
   \[
Transcribed Image Text:### Problem Statement Find the speed over the path \( \mathbf{r}(t) = \langle \cosh(t), \cosh(t), 9t \rangle \) at \( t = 2 \). (Use decimal notation. Give your answer to four decimal places.) ### Given Answer \[ v(2) \approx 10.3630 \] **Status:** Incorrect --- ### Explanation of the Problem You are given a parametric path described by the vector function \( \mathbf{r}(t) \) with components involving the hyperbolic cosine function \( \cosh(t) \) and a linear term \( 9t \). The goal is to find the speed at a specific time, \( t = 2 \). ### Solution Outline 1. **Compute the derivative \( \mathbf{r}'(t) \)**: \[ \mathbf{r}'(t) = \left\langle \frac{d}{dt} \cosh(t), \frac{d}{dt} \cosh(t), \frac{d}{dt} 9t \right\rangle \] 2. **Evaluate the derivative**: \[ \mathbf{r}'(t) = \langle \sinh(t), \sinh(t), 9 \rangle \] 3. **Find the magnitude of the derivative (speed)**: \[ v(t) = \|\mathbf{r}'(t)\| = \sqrt{(\sinh(t))^2 + (\sinh(t))^2 + 9^2} \] Simplify using \(\sinh^2(t) + \sinh^2(t)\): \[ v(t) = \sqrt{2\sinh^2(t) + 81} \] 4. **Substitute \( t = 2 \)**: \[ v(2) = \sqrt{2\sinh^2(2) + 81} \] Compute \( \sinh(2) \): \[ \sinh(2) \approx 3.6269 \] Square the value: \[ \sinh^2(2) \approx 13.1577 \] 5. **Final Calculation**: \[
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Similar questions
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning