Find the solution of the given initial value problem. y" + 4y = sint + uz(t)sin(t – a), y(0) = 0, y' (0) = 0 1 1 y(t) = sint +÷sin2t -juz(1)sint lUz(t)sin2t 1 y(t) = sin2t – sint – uz(1)sint – uz(t)sin2t 1 1 1 ()sin2t y(1) = =sint – sin21 – u,()sint – u-()sin2t '일이 1 y(t) = -sint 6. 1 1 1 y(t) = sint –-sin2t 1 »() = sint -sin2t - . 1 ÷sin2t 1 Uz(t)sin2t 3

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Topic Video
Question
100%

Please solve & show steps... 

Find the solution of the given initial value problem.
y" + 4y = sint + U„(t)sin(t – n), y(0) = 0, y' (0) = 0
1
1
1
1
y(t) = sint + sin2
U(1)sint – u, (t)sin2t
34
3
1
1
1
1
y(t) = sin2t – sint - u, (t)sint – t(t)sin2t
3
3
1
1
1
1
Y0) = sint - sin21 –()sint – ,()sin2t
y(t):
3
(1)sin2t
1
1
y() = sint – sin21
3
1
1
1
y(t)
3
=-sint
sin2t
- Zun(t)sin2t
Transcribed Image Text:Find the solution of the given initial value problem. y" + 4y = sint + U„(t)sin(t – n), y(0) = 0, y' (0) = 0 1 1 1 1 y(t) = sint + sin2 U(1)sint – u, (t)sin2t 34 3 1 1 1 1 y(t) = sin2t – sint - u, (t)sint – t(t)sin2t 3 3 1 1 1 1 Y0) = sint - sin21 –()sint – ,()sin2t y(t): 3 (1)sin2t 1 1 y() = sint – sin21 3 1 1 1 y(t) 3 =-sint sin2t - Zun(t)sin2t
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Propositional Calculus
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,